
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Ile

DTIC
ELECTF
FEB12 21992u

THESIS

RAPID PRODUCTION OF
GRAPHICAL USER INTERFACES

by

David Maurice King
and

Richard Montgomery Prevatt 1I1

December 1990

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited.

92-03287

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSI1FICATIONIEOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School CS/ZK Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING ,8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

RAPID PRODUCTION OF GRAPHICAL USER INTERFACES (unclassified)

12. PERSONAL AUTHOR(S)

King, David Maurice, and Prevatt, Richard Montgomery, I
13a. TYPE OF REPORT 13b. TIME COVERED I 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Master's Thesis FROM 04/89 TO 12/90 December 1990 '21
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the authors and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessay and identify by block number)

FIELD GROUP SUB-GROUP Graphics, Graphical User Interface, User Interface, Simulation, Computer
Aided Software Generation, DoD Software Development

19. ABSTRACT (Continue on reverse it necessary and identify by block number)

There is a growing demand within the military for effective, flexible and configurable command and control
workstations suiting the diversity of experience and working style that commanders bring to the decision making
process. This need motivates development of real-time three-dimensional simulators at the Naval Postgraduate
School. Our work concentrates on the graphical user interface and presents a study of information display, interface
human factors, and underlying implementation efficiency considerations so as to enhance real-time simulation
systems with minimal degradation in performance.

High quality interface software is costly in time and money, and it is essential for effective system performance.
Our research culminated in the implementation of the NPS Panel Designer and ToolBox (NPSPD), an automated
development environment that enables design, implementation, modification, and testing of customized graphical
user interfaces. NPSPD includes automatic generation of compilable source code which can stand alone or be
integrated quickly into a developer's application. NPSPD was developed using Silicon Graphics Inc. IRIS 4Df7OGT
and 4D/GTX workstations, relatively low-cost systems which are commercially available. Methodology used and
techniques developed provide a foundation applicable to any hardware capable of a windowing and graphics display.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

DUNCLASSIFIED/UNLIMITED [- SAME AS RPT. []DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Michael J. Zvda (408) 646-2305 CS/ZK

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

RAPID PRODUCTION OF
GRAPHICAL USER INTERFACES

by
David Maurice King

Lieutenant, United States Navy
B.S., North Dakota State University, 1984

and

Richard Montgomery Prevatt III
Lieutenant Commander, United States Navy

B.S.E., Duke University, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1990

Authors: y V

Richard Montgomery Prevatt III

Approved By:

Robert B. McGhee, Chairman,
Department of Computer Science

ii

UNCLASSIFIED
CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED
a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;distribution is unlimited

. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Na-.'al Postgraduate School CS/ZK Naval Postgraduate School
c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

a. NAME OF FUNDING/SPONSORING r8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION[(if applicable)

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO.I NO. NO. ACCESSION NO.

1. TITLE (Include Security Classifiation)

RAPID PRODUCTION OF GRAPHICAL USER INTERFACES (unclassified)

2. PERSONAL AUTHOR(S)
King, David Maurice, and Prevatt, Richard Montgomery, 1II

3a. TYPE OF REPORT I13b. TIME COVRED 14. DATE OF REPORT (Year, Month, Day) I5.PGECOUNT
Master's Thesis FROM .4/89 TO 12/90 December 1990 '221

6. SUPPLEMEN IARY NOTATION
The views expressed in this thesis are those of the authors and do not reflect the

official policy or position of the Department of Defense or the United States Government.
7. COSATI CODES ' 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Graphics, Graphical User Interface, User Interface, Simulation, Computer
[I I Aided Software Generation, DoD Software Development

D. ABSTRACT (Continue on reverse if necessary and identify by block number)

There is a growing demand within the military for effective, flexible and configurable command and control
,orkstations suiting the diversity of experience and working style that commanders bring to the decision making
rocess. This need motivates development of real-time three-dimensional simulators at the Naval Postgraduate
,chool. Our work concentrates on the graphical user interface and presents a study of information display, interface
uman factors, and underlying implementation efficiency considerations so as to enhance real-time simulation
ystems with minimal degradation in performance.

High quality interface software is costly in time and money, and it is essential for effective system performance.
'i:: research culminated in the implementation of the NPS Panel Designer and ToolBox (NPSPD), an automated

evelopment environment that enables design, implementation, modification, and testing of customized graphical
ser interfaces. NPSPD includes automatic generation of compilable source code which can stand alone or be
itegrated quickly into a developer's application. NPSPD was developed using Silicon Graphics Inc. IRIS 4D/70GT
nd 4D/GTX workstations, relatively low-cost systems which are commercially available. Methodology used and
:chniques developed provide a foundation applicable to any hardware capable of a windowing and graphics display.

:DISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Michael J. Zda (408) 646-2305 CS/ZK
) FORM 1473,64 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

RAPID PRODUCTION OF
GRAPHICAL USER INTERFACES

by
David Maurice King

Lieutenant, United States Navy
B.S., North Dakota State University, 1984

and

Richard Montgomery Prevatt III
Lieutenant Commander, United States Navy

B.S.E., Duke University, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1990

Authors: y VI
"d " "

Richail Montgomery' Prevatt III

Approved By:
Michael P 4d Tl-iAdvisor

Robert B. McGhee, Chairman,
Department of Computer Scier,.c

ii

ABSTRACT

There is a growing demand within the military for effective, flexible and configurable

command and control workstations suiting the diversity of experience and working style

that commanders bring to the decision making process. This need motivates development

of real-time three-dimensional simulators at the Naval Postgraduate School. Our work

concentrates on the graphical user interface and presents a study of information display,

interface human factors, and underlying implementation efficiency considerations so as to

enhance real-time simulation systems with minimal degradation in performance.

High quality interface software is costly in time and money, and it is essential for

effective system performance. Our research culminated in the implementation of the NPS

Panel Designer and ToolBox (NPSPD), an automated development environment that

enables design, implementation, modification, and testing of customized graphical user

interfaces. NPSPD includes automatic generation of compilable source code which can

stand alone or be integrated quickly into a developer's application. NPSPD was developed

using Silicon Graphics Inc. IRIS 4D/70GT and 4D/GTX workstations, relatively low-cost

systems which are commercially available. Methodology used and techniques developed

provide a foundation applicable to any hardware capable of a windowing environment and

graphics display.

Accession ?or

NTIS GRA&I [D711±12
LT;, -p-,

j-

TABLE OF CONTENTS

INTRODUCTION ... 1
A. USER INTERFACE DESIGN ... 2

B. USER INTERFACE DEVELOPMENT SYSTEMS 3

1. C onm an ... 3

2. M IK E ,..........................4

3. Sassafras .. 5

4. G R O W ... 5

5. Layered User Interface .. 6

C. PREVIOUS NPS SIMULATOR INTERFACES 6

I. M enu System s ... 7

2. Button and Dial Boxes ... 7

3. C olors .. 8
D. FOCUS -- NPS PANEL DESIGNER AND TOOLBOX 9

E. THESIS ORGANIZATION .. 8

H. HUMAN FACTORS AND USER INTERFACE DESIGN 10
A. DESIGN PRINCIPLES .. 11

I. Guidelines and References ... 11

2. The Development Process ... 11

3. Consistency, Flexibility and the User Model 12

4. Informative Feedback and Help .. 13

5. Dialogues that Yield Closure ... 14

6. Shortcuts for Expert Users .. 14

7. Internal Locus of Control ... 14

8. R eversal of A ctions ... 15

9. Simple Error Handling 15

10. Minimal Short Term Memory Load ... 15

iv

B. ASPECTS OF THE USER INTERFACE .. 16

1. Data Entry ... 16

2. Data Display .. 17

3. Sequence Control .. 18

4. User Guidance ... 20

5. Data Protection .. 21

111. NPSPD FU N CTIO NA L M O D EL ... 22

A. M odel of the User Interface .. 22

B. Development Process ... 24

C. NPS Panel Designer .. 25

1. Palette and Actuators .. 26

2. W orkspaces and Panels .. 27

D. Interaction with NPSPD .. 28

I. M ouse ... 28

a. Left-mouse ... 28

b. M iddle-mouse ... 29

c. Right-mouse ... 29

2. Keyboard ... 29

3. M enu ... 30

4. Current W orkspace and Actuator .. 30

5. W orkspace Tools ... 31

6. Customization and Layout Tools ... 31

E. Addition, Deletion, Modification of Panels and Actuators 31

F. Intermediate File .. 32

G. Source Code Generation and Application Linking 33

H. Compilation ... 33

TV. NPSPD DESIGN TOOLS 35

A. Panel M anager 35

B. Actuator M anager ... 36

C. Color M anager .. 38

v

D. Intermediate File Manager .. 39

E. Source Code Manager ... 39

F. Information Manager .. 39

G. Help Manager .. 40

V. NPSPD TOOLBOX LEIBRARY...41

A. Initialization Procedures... 41

B. Creation Procedures.. 42

C. Insertion Procedures ... 43

D. Modification Procedures... 43

1. Set-attribute()... 44

2. Set-detail() .. 44

3. Binding Modifications.. 44

E. Processing Cycle 45

F. Processing Techniques... 45

G. Display Considerations .. 47

H. Efficiency Considerations ... 47

VI. NPSPD INTERMEDIATE FILE 49

A. INTERMEDIATE FILE LAYOUT .. 49

1 . REGULARITY.. 50

2. SYNTAX .. 50

a. File Header and Footer .. 50

b. Panels... 50

c. Actuators ... 52

d. Custom Colors ... 52

e. Comments .. 52

B. PARSER... 53

1. Lexical Analyzer.. I.....-5

2. Reserved words............................ 53

3. Numbers ... 54

4. Comments.. 54

vi

5 . E rro rs ... 54

C. M ODIFICATIONS TO VALUES ... 54

VII. NPSPD SOURCE CODE GENERATION 55

A. Code M anager ... 55

B. Generated Code .. 56

1. UserPanel.c .. 56

2. UserPanelfn.c .. 57

a. userjinit_queue() ... 57

b. userinitmenu() ... 57

c. userinitcursor() .. 57

d. userinitoverlayo .. 57

e. userinitm ain0 ... 57

f. user-processqueue0 .. 57

g. user-processmenu0 .. 57

h. userjdisplay0 ... 58

i. user-exit0 .. 58

j. Entry Point M odification .. 58

3. UserPanel.h ... 58

C. Compiling and Linking .. 58

VIII. COMPLETE NPSPD APPLICATION 63

A. Building an Interface ... 63

1. Starting NPSPD .. 63

2. Creating the Panels ... 64

3. Customizing the Panels .. 64

4. Placing the Actuators ... 65

a. ViewingControl Panel 65

b. InstrumentPanel 67

c. ButtonControl Panel 70

d. ControlSurfaces Panel ... 72

e. W elcomeScreen Panel ... 73

vii

B. Generating Code ... 74

C. Editing the Generated Source Code .. 75

1 . Verifying the Panel and Actuator Creation Calls 75

2. Customizing the Code.. 75

D. Editing the Application Code ... 75

1 . Header Files ... 75

2. Modifying the Main Program.. 76

a. Initialization .. 76

b. Main Control Loop .. 77

E. Linking the Application Code to the NPSPD Library 80

1, Including the ToolBox header file tbx.h 81

2. Compiling the Interface Code ... 81

F. Testing and Enhancing the Interface ... 82

IX. NPSPD LIMITATI1ONS AND FUTURE DIRECTIONS......... 84

A. Limitations.. 84

1 . Interactive user specification of actuator detail 84

2. UNDO key for the last action.. 84

3. Complete help ... 84

4. Identify a grouping of actuators ... 84

5. Continued development of basic actuators 85

6. Smart Exit/Overwrite ... 85

7. Additional actuators partially implemented 85

B. Future Directions... 85

1. Efficiency Considerations.. 85

2. NPSPD Design Considerations .. 86

3. Portability Considerations.. 86

X. CONCLUSIONS 87

viii

APPENDIX A

NPS PANEL DESIGNER AND TOOLBOX
U SER 'S G U ID E ... 89

APPENDIX B

NPS PANEL DESIGNER .ND TOOLBOX
REFER EN C E M A N UA L .. 105

APPENDIX C

NPS PANEL DESIGNER AND TOOLBOX
R ESER V ED W O RD S .. 190

APPENDIX D

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE GENERATED CODE .. 191

APPENDIX E

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE INTERMEDIATE FILE .. 203

LIST OF REFERENCES ... 204

INITIAL DISTRIBUTION LIST ... 206

ix

LIST OF FIGURES

Figure 3.1 Samiple Interface Developed using NPSPD 23

Figure 3.2 Opening Layout of PD .. 25

Figure 3.3 N PSPD Palette ... 26

Figure 3.4 NPSPD Actuator Move/Resize Areas .. 32

Figure 3.5 NPSPD Source Code Compilation ... 34

Figure 4.1 Panel M anager ... 35

Figure 4.2 A ctuator M anager ... 37

Figure 4.3 Color M anager ... 38

Figure 4.4 Information Manager .. 39

Figure 4.5 Help M anager ... 40

Figure 5.1 Creation and Modification Example .. 41

Figure 5.2 NPSPD Initialization Sequence .. 42

Figure 5.3 NPSPD Processing Functions ... 46

Figure 6.1 File M anager .. 49

Figure 6.2 Sample intermediate file .. 51

Figure 7.1 Code M anager ... 55

Figure 7.2 UserPanel.c main loop .. 56

Figure 7.3 UserPanel_fn.c before modifications ... 59

Figure 8.1 Initial Layout of panels for the AUV interface 65

Figure 8.2 Initial ViewingControl panel .. 66

Figure 8.3 Final layout of the Viewing_Control panel 68

Figure 8.4 InstrumentPanel intermediate file (Meters) 69

Figure 8.5 Final Layout of the Instrument-Panel .. 71

Figure 8.6 Final layout of the ButtonControl panel 72

Figure 8.7 Final layout of the ControlSurfaces panel 3

Figure ".8 Final layout of the Welcome-Screen panel 74

Figure 8.9 Modified Globals.h File .. 77

Figure 8.10 Original Main Control Loop for the AUV Simulator 78

Figure 8.11 Modified Main Control Loop ... 79

Figure 8.12 UpdatePanelValues Function ... 81

Figure 8.13 Modified Makefile for the AUV Simulator 82

Figure B .I Label Locations .. 124

Figure B .2 V alue Locations ... 131

xi

LIST OF TABLES

Table I ToolBox Actuators.. 27
Table 11 NPSPD Keyboard Functions .. 29
Table III NPSPD Menu Selections .. 30
Table IV Tool.Box Actuator Initialization Functions............................... 43

ACKNOWLEDGEMENTS

NPS Panel Designer and ToolBox was in all respects a team effort by both authors,

each contributing to the details of the others work. Lieutenant King developed the panel,

actuator, and color editing modules and designed the intermediate file format including the

lexical analyzer and parser central to saving and recalling panel design files. His major

focus was the development of the Panel Designer interface control, information prompts

and the help system. Lieutenant Commander Prevatt designed the data structures and

functions used in the Panel Designer and ToolBox, designed the attributes of panels and

actuators, implemented the processing and drawing routines, and developed the source

code generation module. He provided the overall program design including the format for

the generated source code and the means to link it to users' applications.

During our design and development of the NPS Panel Designer and ToolBox, we

depended on the support and advice of many individuals. Their assistance made this project

possible. We would like to thank the following people for their contributions.

David A. Tristram provided a significant and foundational contribution of the concepts

and techniques within the NASA Panel Library, without which this project would not have

been conceived. His work provided needed answers to tough design questions.

Lieutenant Commander John M. Yurchak provided his expertise in the tactical use of

fleet command and control stations, his amazing knowledge of the C programming

language and the UNIX operating system, and his proven and effective approach to

software development. Many of the concepts implemented in this design tool have their

origin in discussions with John.

Commander Rachel Griffin provided her clear grasp of technical yet readable English

to keep this thesis reasonable and her thorough understanding of diverse programming

languages to broaden the design considerations.

Lieutenant Andy Anderson, Commander Tom Jurewicz, and Lieutenant John Lyon,

bravely chose to use the Panel Designer and ToolBox during its development and before its

completion as part of their thesis research and development. Their ALPHA testing of the

xiii

Designer software revealed many elusive bugs and identified improvements to overall

design that have been incorporated into the final version.

Rosaleen and Tina patiently endured and faithfully encouraged our work. Matthew

provide an often needed and refreshing diversion.

Most significantly, we thank our principle advisor, Dr. Michael Zyda, who provided

vision, critical advice and guidance during the year comprising this project's development.

xiv

I. INTRODUCTION

The continually growing need within the military for effective, flexible and

configurable command and control workstations motivates research into real-time

information presentation. One fruitful area of this research explores development of real-

time three-dimensional simulators having advanced user interfaces. During the past six

years, several such simulators have been implemented on Silicon Graphics Inc. (SGI)

workstations at the Naval Postgraduate School (NPS), Monterey, California. NPS

simulator applications span a diversity of tasks including flight control, ground-based

vehicle control, and surface and subsurface ship control.

The complexity of the tactical environment and the three-dimensional and real-time

nature of NPS simulators increases the need for advanced user interfaces. The effectiveness

of an entire system depends extensively on the interface, its ability to transform data into

information, and its ability to clearly and simply provide the user a means to control system

operation (Smith and Mosier, 1986, p.296). And as emphasized by Smith, information

rather than merely data must be presented.

When we examine the process of man-computer communication from the human
point of view, it is useful to make explicit a distinction which might be described as
contrasting "information" with "data". Used in this sense, information can be regarded
as the answer to a question, whereas data are the raw materials from which information
is extracted.

What the computer can actually provide the man are displays of data. What
information he is able to extract from those displays is indicated by his resporses. How
effectively the data are processed, organized, and arranged prior to presentation will
determine how effectively he can and will extract the information he requires from his
display. Too frequently these two terms data and information are confused, and the
statement, "I need more information," is assumed to mean, "I want more symbols."
The reason for the statement, usually, is that the required information is not being
extracted from the data. Unless the confusion between data and information is
removed, attempts to increase information in a display are directed at obtaining more
data, and the trouble is exaggerated rather than relieved. (Smith, 1963, pp.296-297)

A. USER INTERFACE DESIGN

Develipment of a successful user interface for any application is an expensive and

time consuming process, and often the final product does not lend itself to easy

modification. One study estimates that user interface design comprises an average of 30 to

35 percent of the time used to produce operational software (Smith and Mosier, 1984). The

users' view of a system is "conditioned chiefly by experience with its interface. If the user

interface is unsatisfactory, the users' view of the system will be negative" (Smith and

Mosier, 1986, p.4).

Recent hardware and software developments significantly affect design and

implementation of user interface software. Powerful workstations with bitmapped screens

and pointing devices provide a sophisticated technological base for new interface designs.

Computer processor speeds support interactive applications that are increasingly

innovative. And the increasing complexity of application software mandates a clear

communication between user and computer (Fischer, 1989). But as Foley points out, "we

are only beginning to understand what constitutes a good user interface and the

management processes required to create such interfaces. ...there has been an insufficient

software foundation upon which to build the interfaces" (Foley, 1986).

To reduce the high cost of implementing user interfaces, many research efforts explore

development of improved tools for construction of user interfaces. The more advanced of

these tools are referred to as User Interface Management Systems (UIMSs) (Pfaff, 1985).

A UIMS implements some or all of the interface between the user and the application's

action routines. Input to a UIMS typically includes screen designs, menu organizations,

dialogue syntax, help files, and prompt messages. Interactive design tools are often

provided so that the designer can specify these user interface elements graphically (Foley,

1986). Hill introduces the designation User Interface Development System (UIDS) to more

accurately reflect the emphasis of current integrated environments in which to design,

implement and test user interface software (Hill, 1986).

Graphical interfaces can ease the process of learning, using, and understanding

applications, yet many applications do without a graphical interface because it is too

difficult to construct. Even with the aid of a sophisticated graphics package, interfaces are

2

typically closely tied to their applications and therefore difficult to modify or reuse in

different applications (Barth, 1986). Most user interfaces are implemented using traditional

programming languages. Object-oriented programming provides a different, more

powerful programming paradigm that enhances programmer productivity and encourages

reuse of existing software modules (Foley, 1986).

A direct-manipulation interface presents its user with a set of visual representations on

a graphical display for the internal objects and a repertoire of generic manipulations that

can be performed on any of them. The user has no command language to remember beyond

the standard set of manipulations and a continuous reminder on the display of the available

objects and their states. Direct manipulation represents a powerful model for designing user

interfaces (Jacob, 1986).

Traditional user interfaces are highly moded, that is the same input operations map to

several different meanings. A moded interface requires that the user remember (or the

system remind him) which mode the system is in at any given time and which different

commands or syntax rules apply. Modeless systems do not require this (Jacob 1986).

Direct-manipulation user interfaces appear to be modeless. Available objects are visible on

the screen and the user can apply any of a standard set of commands to any object. The

system remains in the same "universal" or "top-level" mode.

B. USER INTERFACE DEVELOPMENT SYSTEMS

The following sections discuss several User Interface Development Systems that have

been implemented. Each demonstrates some of the principles that are important to user

interface development. Other commonly known graphical user interface systems in use

today include DECwindows, Motif, NewWave, NeXTStep, Open Look, Presentation

Manager, SunViews, ViewPoint, and X Window System. Most of these provide tools and/

or a development environment for designing and implementing graphical user interfaces.

1. Conman

Conman is a graphical Data-Flow Manager based on the UNIX principle of

connecting simple tools that each do one thing well. After individual tools are started

separately, the data-flow manager connects the output of one to the input of another. The

3

Conman environment facilitates creation of a user interface that translates user actions into

higher level commands. It suggests an end to monolithic integrated applications in favor of

dis-integrated functional fragments with protocols for communication of objects between

fragments (Haeberli, 1987).

Conman runs under the Silicon Graphics Inc. IRIS window manager and presents a

graphical representation of the input and output terminals of each active process as the user

points to its window on the screen. The user completes a connection by selecting an output

terminal, then selecting an input terminal using the mouse. After the connection is made, a

displayed line connecting the output terminal to the input terminal indicates the connection

is made. Connections may be broken later if required.

2. MIKE

MIKE is Menu Interaction Kontrol Environment, a UIMS developed by Brigham

Young University Interactive Software Systems Laboratory. MIKE is implemented on a

DEC/Vaxstation II and DEC VT240 graphics terminal and has a complete graphical layout

facility within the interface editor for drawing the viewport and icon definitions. MIKE has

the capability to generate a working prototype of the user interface with appropriate entry

points for application specific procedures. The interface in development can be prototyped

before application implementations are complete.

The development of MIKE was guided by five major goals applicable to UIMSs:

* A UIMS should be based on a simple conceptual model for designing user interfaces
that is readily understood by both programmers and nonprogrammers alike.

• It should be possible to generate a working prototype of the user interface
immediately on the basis of the basic definition alone.

* It should be possible to refine and enhance the default-generated interface
continuously, using tools that are appropriate for the nonprogramming professionals
who become involved in the design process.

" Where possible, all device dependencies, including those of a particular interactive
style, should be isolated in the UIMS rather than in the dialogue description or the
application.

" User interfaces generated by the system should be extensible in the sense that new
commands and capabilities can be added without modifying the application code.
(Olsen, 1986)

4

3. Sassafras

Sassafras is a UIDS consisting c. five modules: an icon builder and library, an

interaction module builder and library, a dialogue specification, an application interface

specification, and an interface assembler. The icon builder and library construct and

manage the symbols, icons and elements of user interface diagrams. The interaction

module builder and library implements an interaction technique. The dialogue specification

details the syntax of the language to be used between the user and the interface. The

application interface specification describes the semantics of the system as a set of

application routines implemented in some traditional programming language. The interface

assembler compiles the pieces of the user interface, linking the dialogue specification with

appropriate interaction techniques, icons, and application routines. Sassafras example

applications include a simple paint program and a computer aided room layout program

(Hill, 1986).

Sassafras supports an iterative design approach to user interface development.

Using this approach, a designer first roughs out a user interface design and develops a

prototype. On the basis of user performance using the prototype, the designer modifies the

interface and implements a new prototype. The design-prototype-evaluate cycle repeats

until the user interface is better than some standard specified by the designer. Hill points

out that despite recommendations for this approach, it is rarely used because of its high

cost. Time and money are usually exhausted during the first cycle (Hill, 1986).

4. GROW

GROW, the GRaphical Object Workbench, supports the development of graphical

user interfaces that are highly interactive (including direct manipulation and animation).

GROW simplifies the process of creating icons, linking the interface and application, and

adding interactivity and animation. Interfaces can be modified and reused in other

applications. Three techniques form the basis of GROW: object-based graphics with

taxonomic inheritance, inter-object relationships such as composition and graphical

dependency, and separation of the interface and application. Object-oriented programming

and separation of the interface and application facilitate specializing and reusing interfaces.

5

Messages defined by GROW and the application provide interaction between the interface

and the application program (Barth, 1986).

GROW is written in Interlisp-D, uses the object-oriented language Strobe and

runs on Xerox 1100 series workstations. Applications using a GROW graphical interface

include a data-flow program simulator, a Petri net editor and simulator, a program

configuration editor, a constructive geometry editor, and an analog computer simulator.

S. Layered User Interface

The Layered User Interface (LUI) is a framework for generating consistent

graphical interfaces composed of buttons, menus, sliders, and dialog windows. LUI is part

of an image processing environment used at the Northrop Research and Technology

Center. It is a series of programs coupled with a design methodology, rather than a single

program. LUI allows incremental addition of user interfaces to graphics tools (Wilson,

1987).

An LUI "button" is a process with a small window attached. Pressing the button

(with the mouse) causes a specific program to execute. Similar to a simple button, a "menu

button" presents a menu of programs rather than a single choice. A "slider" is a process that

translates the location of a slider bar into a UNIX command with a corresponding input

value. LUI provides the "glue" for connecting tools together in ways that create new, more

complex tools.

C. PREVIOUS NPS SIMULATOR INTERFACES

User interfaces developed to date for NPS 3D applications are similar in several ways,

including the use of a mouse to make selections from menus and the use of the SGI button

and dial box to control object selection and orientation. The menu facility provides pull-

down, roll-off style menus supplied as a standard feature of the SGI operating system. The

button and dial box controls are separate hardware devices that sit beside the display

monitor and are linked to the application using operating system calls. These devices are

optional equipment that must be purchased separately. Users that don't have this equipment

are forced to either obtain the hardware or abandon those applications that require it.

6

1. Menu Systems

Using the standard menus on the Silicon Graphics hardware has several

advantages, as well as a few disadvantages. The biggest advantage is ease of

implementation: designing and implementing a menu system is a simple exercise with most

of the effort spent designing the layout of the menu tree. Another advantage of the standard

menu system is the ease of modification: adding a selection involves only inserting the

selection into the appropriate location in the menu tree and specifying the associated action,

while an item to be deleted is simply removed.

The major disadvantage of the SGI supplied menu system exists because a

displayed menu receives the CPU as a dedicated resource, suspending all other operations.

Thus applications suspend processing when a choice is being made from a menu. This is

inconvenient at best, and unacceptable for real-time applications.

A second disadvantage is inherent to all pull-down menu systems: applications

that require a large number of menu choices force the designer to use "roll-off' or
"walking" menus. These menus incorporate a hierarchical design using sub-menus that are

opened when a general menu item is selected. Each sub-menu opens to the right or left of

its parent menu, and more than one sub-menu is possible. The problem occurs because the

menu opens where the mouse is located at the time of the call (right mouse actuation),

except when the mouse is located close to the borders of a window. At the edge of a

window, the operating system will move the mouse away from the border far enough for

the menu to be displayed. If there isn't enough room for the roll-off menus to be normally

displayed, they will stack on top of one another rather than alongside the parent menu. The

inconsistency of menu location and layout distracts the user's attention away from the
application and violates basic user-interface guidelines.

2. Button and Dial Boxes

Button and dial boxes have other problems in addition to the question of

availability. Poor feedback from the dials and difficulty setting a precise value because of

the nature of their design commonly frustrate users. The mechanical rheostat device

routinely produces inconsistent values. The button box offers immediate feedback by way

of an LED display on each button, but as a mechanical device it is also subject to failure.

7

3. Colors

Another important feature of the interfaces for the NPS simulators is the use of

color. In all of the simulators the colors are hard-coded, that is they can not be changed

interactively by the user. This includes colors for the information and control panels, the

terrain and objects (airplanes, ships, etc.), and the menus. In most cases these colors would

never need to be changed. However the user interface should include the ability to

customize the colors of a minimal set of things, including the simulator's controls and the

information screens that define the look and feel of the application.

D. FOCUS -- NPS PANEL DESIGNER AND TOOLBOX

High quality interface software is costly in time and money, and it is essential for

effective system performance. Our work concentrates on the graphical user interface and

presents a study of information display, interface human factors, and underlying

implementation efficiency considerations so as to enhance real-time simulation systems

with minimal degradation in performance. Our research culminated in the implementation

of the NPS Panel Designer and ToolBox (NPSPD), an automated development

environment that enables design, implementation, modification, and testing of customized

graphical user interfaces. NPSPD includes automatic generation of compilable source code

which can stand alone or be integratd quickly into a developer's application. NPSPD was

developed using Silicon Graphics Inc. IRIS 4Df7OGT and 4D/GTX workstations, relatively

low-cost systems which are commercially available. Methodology used and techniques

developed provide a foundation applicable to any hardware capable of a windowing

environment and graphics display.

E. THESIS ORGANIZATION

Chapter II presents human factors principles and guidelines indicated for successful

user interface design. Chapter III presents the abstract functional model comprising

NPSPD, including a description of its components, capabilities and terminology. Chapter

IV presents the NPSPD design tools, including detailed descriptions of how they can be

most effectively utilized. Chapter V describes the NPSPD ToolBox library of actuators and

functions, includiig examples of programming level usage. Chapter VI describes the

8

NPSPD File Manager and the intermediate file with its format, flexibilities and

modification techniques. Chapter VII describes the NPSPD Code Generation feature with

suggested entry points and instructions for linking panel code to target applications.

Chapter VHI presents the development of a complete graphical user interface for an

existing application. Chapter IX presents capabilities and limitations of NPSPD with

suggestions for furthr research and possible system enhancement. Chapter X presents

conclusions. Appendix A presents the NPSPD User's Guide and Appendix B presents the

NPSPD Reference Manual. Appendix C lists reserved words for the NPSPD intermediate

file parser. Appendix D presents sample generated code. And Appendix E presents a

sample intermediate fil.

NPS Panel Designer and ToolBox was in all respects a team effort by both authors,

each contributing to the details of the others work. Both authors wrote and reviewed Al

aspects of this work. Lieutenant King developed the panel, actuator, and color editing

modules and designed the intermediate file format including the lexical analyzer and parser

central to saving and recalling panel design files. His major focus was the development of

the Panel Designer interface control, information prompts and the help system. His writing

focused in Chapters I, IV, VI, VII, VIII, IX, and X. Lieutenant Commander Prevatt

designed the data structures and functions used in the Panel Designer and ToolBox,

designed the attributes of panels and actuators, implemented the processing and drawing

routines, and developed the source code generation module. he provided the overall

program design including the format for the generated source code and the means to link it

to users' applications. His writing focused in Chapters 1, II, III, V IX, and X.

9

H. HUMAN FACTORS AND USER INTERFACE DESIGN

"A part of the purpose of the user interface is to transform data into information
and present it in a fashion that makes it easily absorbed and used" (Smith, 1963,
p.297).

The user interface is the method used by an application program to interact with the

operator (Goodwin, 1989, p.viii). Its main function is communication. The user interface

must convey to the user all the instructions on the program's use, must allow the user to

control the program as naturally as possible, and must provide the program's results to the

user. If the interface gives unclear instructions, or complicates the control of the task, then

the communication, the interface, and ultimately the software are unsuccessful (Brown and

Cunningham, 1989, p.6). Users may compensate for a poor design with extra effort, and

probably no single user interface design flaw, in itself, will cause system failure. But there

is a limit to how well users can adapt to a poorly designed interface (Smith and Mosier,

1986, p.3).

Software is not the only significant factor influencing user performance. Other aspects

of user interface design are also important, including workstation design, physical display

characteristics, keyboard layout, environmental factors such as illumination and noise,

written documentation, and training (Smith and Mosier, 1986, p.2). It is useful to

distinguish between the physical and conceptual aspects of the interface. The hardware

(keyboard, display screen, mouse, etc.) affect the way in which the system behind the

interface may be used, but they do not affect its conceptual power. Conceptual limitations

arise because the machine representation of the world is minimal and rigid, and usually

only just sufficient to achieve the task in hand (Thimbleby, 1985, p. 168).

We will focus on design features of the user interface that are implemented via

software. "The 'design' in the program establishes the contents of processed data available

to the operator and the visual relationships among the data. It can also establish the

sequence of actions which the operator must use and the feedback to the operator

concerning those actions" (Parsons, 1970, p. 169). The developer must distinguish between

10

what the computer will do and what the human will and can do. He makes assumptions

about what the user will want to do, remembering that each user is an individual, with his

or her own talents, goals, knowledge and preferences (Fischer, 1989).

A. DESIGN PRINCIPLES

1. Guidelines and References

As formal human-computer interface theories are fully developed, researchers

propose applicable methods and principles of interface design (Fischer, 1989). Ramsey and

Atwood completed a comprehensive survey of user-computer interaction literature as early

as 1979. MIL-STD-1472D, revised in 1989, provides minimal guidance for the interface

developer in a relatively small section, "User-Computer Interface". Several organizations,

including those listed below, have developed helpful in-house guidelines for user interface

design.

• Cuidelinesfor Designing User Interface Software. by MITRE Corporation for
Electronic Systems Division, U. S. Air Force.

* Spacelab Experiment Computer Application Software (ECAS) Display Design and
Command Usage Guidelines. NASA (National Aeronautics and Space
Administration).

* Human Factors in Office Auomation. Life Office Management Association.

" Human Factors Engineering Standards for Information Processing Systems.
Lockheed Missiles and Space Company.

* Design guidelines for user transactions with battlefield automated systems:
Prototype for a handbook. US Army Research Institute.

2. The Development Process

User interface guidelines vary depending on the application and the target users'

skill levels. Even the most careful design will require testing with actual users in order to

confirm the value of good features and discover what bad features may have been

overlooked (Smith and Mosier, 1986, p. 10). "Neither the Designer nor the User have a clear

idea of what is required until they have a working system" (Thimbleby, 1985, p.169).

Testing is so essential for ensuring good design that some experts advocate early creation

of an operational prototype to evaluate interface design concepts interactively with users,

11

with iterative design changes to discover what works best (Gould, 1983). But prototyping

is no substitute for careful design. Prototyping will allow rapid change in a proposed

interface, but unless the initial design is reasonably good, prototyping may not produce a

usable final design (Smith and Mosier, 1986, p.10).

We have seen the design-prototype-test-redesign principle practiced in current

NPS Computer Science research as thesis students use NPSPD to work out an initial user

interface design for their system, then evaluate it in the context of the application, and

subsequently return to NPSPD to redesign and improve the interface.

3. Consistency, Flexibility and the User Model

The interface should be consistent throughout the program supporting a single

model of the problem and its solution. The user needs a concise, memorable and accurate

maxim which conveniently expresses the rules of system interaction. Together with

training in explicit reasoning about interaction, the maxim provides a sure foundation on

which to build the user model. The designer then uses the same maxim (plus equivalent

reasoning processes) to constrain system behavior to be compatible with it (Thimbleby,

1985, p. 17 1). One successful interface technique provides that 'what you see is what you

get'. This phrase specifies certain properties of a user interface which, with a little

explanation, may be used for the user to develop hypotheses about system behavior

(Thimbleby, 1985, p. 17 5).

Consistency includes two aspects--consistency in the mental model a user has of

an application, and consistency in the way the user controls the application (Brown and

Cunningham, 1989, p.9). Consistent sequences of actions should be required in similar

situations, identical terminology should be used in prompts, menus, and help screens, and

consistent commands should be employed throughout. Exceptions should be

comprehensible and limited in number (Shneiderman, 1987, p.61).

The interface must be flexible to work with a wide range of users without

sacrificing consistency (Brown and Cunningham, 1989, p.7). A flexible interface provides

multiple ways to accomplish the task and allows the user to choose aspects of the

interaction style which he or she prefers (e.g. menu versus function key selection). To some

12

extent, the user should be able to establish the interaction method and to customize the

interface.

4. Informative Feedback and Help

The interface must keep the user aware of what is going on in the task (Brown and

Cunningham, 1989, p.8). For each action there should be appropriate system feedback. For

frequent and minor actions the response can be very modest, and for infrequent and major

actions the response should be more substantial. Visual presentation of the objects of

interest provides a convenient environment for explicitly showing changes (Shneiderman,

1987, p.61). The computer should provide suitable cues to allow the user to select the next

action, e.g. a confirmation for important processing such as deleting an object or file. The

system must provide timely confirmation that desired actions are in progress or completed

(Fischer, 1989).

The user interface should include access to help. A well-constructed interface can

almost totally eliminate the need for an external manual. A multi-faceted help facility

appears to be best at providing incrementally more assistance as may be needed by expert

to novice users. Quality manuals, online help, and tutorials have a profound effect on users'

success and their impressions of most interactive systems (Shneiderman, 1987, p.382).

In an interactive computing situation, immediate feedback by the system is important

in establishing the user's confidence and satisfaction with the system. A message that

indicates that the system is still working on the problem or a signal that appears while the

system is processing the user's input provides the user with the necessary assurance that

everything is all right. Predictability of computer response is related to system response

time. Timely response can be critical in maintaining user orientation to the task. Some

experts argue that consistency of system response time may be more important in

preserving user orientation than the absolute value of the delay, even suggesting that

designers should delay fast responses deliberately in order to make them more consistent

with occasional slow responses (Engel, 1975, p. 13).

13

5. Dialogues that Yield Closure

Sequen. , of actions should be organized into sequences with a beginning,

middle, and end. The interface should provide informative feedback at the end of a group

of actions (closure). This feedback gives the operator the sense of completion or

accomplishment and suggests that he prepare for the next sequence of actions

(Shneiderman, 1987, p.61).

6. Shortcuts for Expert Users

Humans begin as novices and progress with experience to higher levels of user

classification (Fischer, 1989). As frequency of use increases, so does the desire to reduce

the number of interactions and increase the pace of interaction. Abbreviations, special keys,

hidden commands, and macro facilities assist frequent and knowledgeable users. Shorter

response times and faster display rates improve productivity and the feeling of system

responsiveness (Shneiderman, 1987, p.61). However, consistency of control is more

important than shortcuts. The user depends on consistent interface design to set practical

limits on what must be learned and remembered about the system (Smith and Mosier, 1986,

213).

Two forms of human memory affect user interface design. Recognition memory

connects command choices to displayed options, as in a menu. Recall memory enables

selection of an invisible command choice or option for the desired action when the user

already knows the commands (Brown and Cunningham, 1989, p.22). Experienced users are

more able to rely on recall memory as is needed for command systems. Recognition

memory is preferable for novice users.

7. Internal Locus of Control

Operators desire the sense that they are in charge of the system and that the system

responds to their actions. Surprising system actions, tedious sequences of data entries,

difficulty in obtaining desired information and inability to produce the desired action all

build anxiety and dissatisfaction. Users should be the initiators of actions rather than the

responders (Shneiderman, 1987, p.62). And the interface should keep the computer from

coming between the user and the work (Brown and Cunningham, 1989, p.7).

14

8. Reversal of Actions

As much as possible, actions should be reversible. This relieves user anxiety since

errors are easily correctable, and it encourages exploration of unfamiliar capabilities and

options (Shneiderman, 1987, p.62). A user may not know what he wants to do as he begins

his work. The interface can supply the freedom to experiment and then "UNDO" a mistake.

9. Simple Error Handling

An effective interface design ensures the user cannot make a serious error. If an

error is made, the system detects it and offers simple, comprehensible mechanisms for

handling the error. The user should not have to retype the entire command or entry, but only

repair the faulty part. Erroneous commands should leave the system state unchanged or

produce instructions about restoring the correct system state (Shneiderman, 1987, p.61).

Error messages should be clear, concise and without accusation in tone. Help when needed

should be available.

"The program must not crash" (Brown and Cunningham, 1989, p.8).

10. Minimal Short Term Memory Load

Humans can rapidly recognize approximately seven plus or minus two "chunks"

of information at a time and hold them in short-term memory for fifteen to thirty seconds.

The size of the chunk depends on familiarity with the information. This has been found to

be the case for a number of different scales, for example, color, size, brightness, loudness

and so on (Miller, 1956, pp.81-97).

The limitation of human information processing and recall in short-term memory

requires that interfaces be simple. Reduced window motion and sufficient training time for

codes, mnemonics and sequences of actions improve user performance. Online access to

command syntax forms, abbreviations, codes, and other information should be provided
(Shneiderman, 1987, p.62). Even an experienced user will spend time away from the

application. The interface can assist while he returns to his former level of expertise.

Another difficulty stems from confusion between functionality and ease of use. A

system becomes easier to use for a designer as more capability is added. But the designer

has a higher threshold for complexity than the user, especially when the user is learning.

15

The system becomes harder to use for the user the more that needs to be learned and the

more that can be done accidentally (Thimbleby, 1985, p. 169).

B. ASPECTS OF THE USER INTERFACE

1. Data Entry

Data entry refers to user actions involving input of data to a computer, and
computer responses to such inputs--selecting an object, designating a position, text entry,

actuator control, etc. On-line data entry provides the opportunity for immediate system

validation of user inputs, with timely feedback so that the user can correct errors. Another

important design concept is flexibility--the interface should adapt to the users needs. Pacing

of input should be dictated by the user rather that, the system. General objectives for data

entry design are consistency of data entry transactions, minimizing input actions and

memory load on the user, ensuring compatibility of data entry with data display, and

providing flexible user control of data entry. Data entry guidelines as adapted from Smith

and Mosier follow (Smith and Mosier, 1986, pp.11-90).

* Data entry in context--depth values for submarines, altitudes for airplanes.

" Data entered only once--system should reference original input values.

* Entry via primary display--entered data should appear on primary display.

* Feedback during data entry--display feedback for all user actions.

" Fast response--system feedback should not exceed 0.2 sec (Engel and Granda, 1975)

" Single method for entering data--one consistently available method of data entry.

• Defined display areas for data entry--clear visual definition of entry fields.

• Consistent method for data change--display previous data allowing type-over/insert.

. Explicit Enter action--require user to explicitly accept entry for processing.

" Explicit Cancel action--allow user to explicitly cancel entry before processing.

" Feedback for completion of data entry--system acknowledgment of success or error.

* Distinctive cursor--movable cursor with distinctive visual features.

. Non-obscuring cursor--cursor should not obscure other data on display.

" Precise pointing--cursor includes precise designation for accurate position selection.

* Explicit activation--explicit action separate from cursor positioning to accept entry.

16

• Fast acknowledgment of entry--feedback should not exceed 0.2 sec.

• Large pointing area for option selection--allow area for pointing and selection to be
as large as consistently possible.

" Pointing--when graphic data entry involves pointing, design the user interface so
that actions for display control and sequence control are also accomplished by
pointing, i.e. single method of entry, single entry device.

2. Data Display

Data display refers to computer output of data to a user, and assimilation of
information from such outputs. Display is particularly critical in control tasks involved in

simulation. Avoid overfilling the screen. Twenty-five percent full is considered to be the

maximum above which the background "noise" reduces the ability of the user to locate and

recognize information (Reid, 1985, p. 114). Use the upper right hand quadrant of the screen

for exceptional information. Danchak (1977) reports that users are more sensitive to

changes in the upper right hand quadrant than either of the left hand quadrants. Users are

least sensitive to changes in the lower Tight hand quadrant. Objectives of data display
include consistency of data display, efficiency of information assimilation by the user,

minimal memory load on user, compatibility of data display with data entry, and flexibility

for user control of data display. Data display guidelines as adapted from Smith and Mosier

follow (Smith and Mosier, 1986, pp.91-209).

* Display all and only necessary data--do not overload displays with extraneous data.

• Consistent display format--display data consistently from one screen to the next.

• User control of data display--allow users to control the amount, format and
complexity of displayed data as necessary to meet task requirements.

" Standard symbols--establish standard meanings for graphic symbols and use them
consistently within a system and among systems with the same users.

" Provide overview position of visible section--when user pans over extended display,
provide some graphic indicator of position of visible section within overall area.

* Aid distance judgment -- provide computer aids to distance judgment within graphic
display when accurate distance perception is important.

• Consistent format-- adopt a consistent organization for the location of various
display features from one display to another.

• Distinctive display elements -- make different elements of a display distinctive from
one another.

17

* Spacing to structure display -- use blank space to structure a display. Do not over-
crowd data.

* Page crowded displays--when a display contains too much data, separate into
selectable pages.

* Related data on same page -- keep functionally related data on the same display
page.

* Conservative use of color -- employ color coding conservatively, using relatively
few colors and only to designate critical categories of displayed data. Limit the
number of colors to seven in the entire sequence of screens and choose color
combinations carefully.

* Tonal coding--where users must make relative judgments for different colored areas
of a display, consider employing tonal codes (different shades of one color) rather
than spectral codes (different colors) (Phillips, 1982).

" Ordered color coding--where different areas of a map are coded by texture patterns
or tonal variation, order the assigned code values so that the darkest and lightest
shades correspond to the extreme values of the coded variable. Darkest blue for
deepest ocean depth and lightest blue for shallowest.

• Highlighting--if one area of map is of particular interest, highlight that area.

* Color coding to support task--color tailored to task speeds recognition.

" Color coding under user control--allow user to select and set color coding.

• Redundant color coding -- make color coding redundant with some other display
feature such as symbology and do not code only by color.

" Unique assignment of color codes -- when color coding is used, ensure that each
color represents only one category of displayed data consistently.

3. Sequence Control

Sequence control refers to user actions and computer logic that initiate, interrupt

or terminate transactions (Smith and Mosier, 1986, p.2 1 1). One of the critical determinants

of user satisfaction and acceptance of a computer system is the extent to which the user

feels in control of an interactive session. If users cannot control the direction and pace of

the interaction sequence, they are likely to feel frustrated, intimidated or threatened by the

computer system. Their productivity may suffer, or they may avoid using the system at all

(Brown, 1983, p.4 -1).

A fundamental decision in user interface design is selection of the dialogue

types(s) that will be used to implement sequence control. And an important aspect of

18

dialogue choice is that different types of dialogue imply differences in system response

time for effective operation. Menu selection, function key selection, and graphic interaction

all require fast system response (Smith and Mosier, 1986, p.212). Menus have been

recommended for occasional and novice users as they reduce the amount of information the

user needs to remember. They also serve the useful function of limiting, to a well defined

set, the responses the user can make. Their disadvantage is that, particularly for the more

experienced user, they may be ungainly. As well as being frustrating this can lead to

problems navigating through complex systems (Reid, 1985, p.1 11).

Consistency of control is more important than shortcuts. The user depends on

consistent interface design to set practical limits on what must be learned and remembered

about the computer tools. Objectives of sequence control include consistency of control

actions, minimizing control actions by the user, minimizing memory load on the user,

ensuring compatibility with task requirements, and providing flexibility of control.

Sequence control guidelines as adapted from Smith and Mosier follow (Smith and Mosier,

1986, pp. 2 1 1-290).

• Minimize user actions -- ensure that control actions are simple, particularly for real-
time tasks requiring fast user response.

* Match control to user skill -- simple step by step control for novice users and short-
cut or complex interaction for experienced users.

" Compatibility with user expectations -- ensure that the results of any control entry
are compatible with user expectations and do not confuse the user.

* Supplementary verbal labels for icons -- if icons are used to represent control actions
in menus, display a verbal label with each icon to help convey its intended meaning.

" Direct manipulation -- provide a capability for direct manipulation of objects as a
means of sequence control.

* General list of control options -- provide a general list of basic control options that

are always available to user to serve as a consistent foundation for system control.

" Indicate appropriate control options -- make available a list of options that are valid.

* Prompt for control entry -- guide control entries in sequence as needed by user.

* Display most likely options first -- except as dictated by consistency of control.

" Appropriate response to all entries -- design the interface to deal appropriately with
all possible control entries, correct and incorrect.

19

" Warn of potential data loss or irrevocable change -- prompt user to explicitly
confirm actions that result in loss or change to data.

* Provide an UNDO function -- allow easy reversal of actions.

4. User Guidance

User guidance refers to error messages, alarms, prompts and labels, as well as to

more formal instructional material provided to guide the user's interaction with the

computer. Goals are to permit efficient system use (quick and accurate use of full system

capabilities), with minimal memory load on the user and minimal time required to learn the

system. User guidance should be regarded as a pervasive and integral part of interface

design that contributes significantly to effective system operation. Good user guidance

results in faster task performance, fewer errors and greater user satisfaction. Goals of user

guidance include consistency of operational procedures, efficient use of full system

capabilities, minimal memory load on user, minimal learning time, and flexibility in

supporting different users (Smith and Mosier, 1986, p.291).

Much of the information commonly provided in paper documentation, such as

user manuals, should also be available on line (Brown 1983, p.6-1). Further, on-line

documentation offers a potential cost savings of 70 to 80 percent over more traditional

paper documentation (Limanowski, 1983). User guidance guidelines as adapted from

Smith and Mosier follow (Smith and Mosier, 1986, pp.291-336).

* Standard procedures -- design standard procedures for similar, logically related

transactions.

" Explicit user actions - require user to take explicit actions to initiate processing.

• Affirmative statements -- adopt affirmative rather than negative wording for user
guidance messages.

• Active voice - rather than passive voice in user guidance messages.

" Temporal sequence -- preserve temporal sequence of steps in wording of user
guidance about that sequence.

• Consistent grammatical structure

• Flexible user guidance -- provide means for experienced user to by-pass standard or
le- thy guidance procedures.

20

- Informative error messages -- when the system detects an error, display an error
message to the user stating what is wrong and what corrective action can be taken.

* Brief error messages -- be clear, concise and informative. Extra words are not
helpful.

5. Data Protection

Data protection attempts to ensure the security of computer-processed data from

unauthorized access, from destructive user actions, and from computer failure. Goals of

data protection include effective data security, minimal entry of wrong data, minimal loss

of needed data, and minimal interference with information handling tasks. If data loss from

machine failure and data loss from faulty system operation are minimized through careful

design, then the most serious threat to data protection is the system user (Smith and Mosier,

1986, p. 3 7 1).

21

HI. NPSPD FUNCTIONAL MODEL

NPS Panel Designer provides a powerful environment for rapid design, development

and testing of graphical user interfaces. NPSPD customization tools enable the developer

to tailor an interface to the exact needs and specifications of an application. This chapter

presents the abstract functional model comprising NPSPD including a description of its

components, capabilities and terminology. Chapters IV and V, close companions to this

chapter, describe the NPSPD Design Tools and the NPSPD ToolBox of actuators and

functions. The NPSPD User's Guide, Appendix A, and the NPSPD Reference Manual,

Appendix B, provide complete details of the structures, functions and usage procedures.

Although an object oriented language such as C++ was not available during the design

and implementation of the NPS Panel Designer and ToolBox, an object oriented approach

was used. Distinct abstract data types for the basic actuator and all detailed actuators are

defined. Object related functions provide access to panel and actuator attributes, details and

values.

A. Model of the User Interface

The Panel ToolBox provides customi'- windows called panels and pre-designed,

customizable, mouse-sensitive controls called actuators. A graphical user interface

implemented using NPSPD consists of one or more panels each having zero or more

actuators positioned and functionally connected according to application needs. NPSPD

itself was developed and finalized using earlier versions of NPSPD. Figure 3.1 presents an

example interface developed using NPSPD.

The ToolBox enables the user to control the interface via the mouse or optional user-

defimed keyboard equivalent keys. As the user presses the left-mouse button with the

mouse-cursor inside the boundary of an actuator, the ToolBox records the actuator as

selected and active, and it record, the host panel associated with that actuator as selected

and active. A panel can be selecteo even without the direct selection of one of its actuators

22

Figure 3.1 Sample Interface Developed using NPSPD

by pressing the left-mouse button with the mouse-cursor on the panel but outside of all of

the actuators. A panel and actuator remain selected until the left-mouse button is released.

Positioning the mouse-cursor while the left-mouse button is pressed controls the value

of an actuator depending on the nature and function of that actuator. The actuator's

displayed appearance reflects its state and value at all times. While the value or state is

changing, the ToolBox redraws the actuator. Once the panel or actuator is de-selected, the

ToolBox updates the display one final time and not again until the user initiates some other

control action.

NPSPD provides key-equivalents for activation of actuators. A key-equivalent is an

optional, user-defined key that is associated with an actuator. Pressing the defined key

causes the same processing as activation with the left-mouse button. Key-equivalents apply

primarily to buttons.

Any time a panel or an actuator is selected, the ToolBox selectively executes several

optional, user defined functions. Pointers provided within the data structures of each panel

and each actuator reference a processing function, a new value function, a left-mouse

button down function, an active function, and a left-mouse button up function. During each

interface processing cycle for a selected actuator, processfuncd (if defined) performs

23

internal processing that must occur every cycle, newvalfunc computes the actuator state and

value based on the X and Y coordinates of the mouse-cursor relative to the actuator, and

downfunc, activefunc and upfunc connect user defined functionality to the actuator. The

NPSPD Reference Manual provides .,etails of these functions and their uses.

B. Development Process

Development of an effective interface requires a thorough consideration of the

application to which it will be applied. Five basic phases make up the development process:

preliminary design of the interface content and layout, development of the interface in the

NPSPD environment, generation of compilable source code, modification of the interface

and application source code to include appropriate communication links, and finally,

compiling and linking the NPSPD interface code with the application code.

Once the application needs are defined, a careful layout sketch clarifies the user

interface and speeds the development process using NPSPD. Most interfaces are laid out in

screen relative units (pixels). For the SGI standard 19 inch display screen, 100 pixels span

approximately one inch. Quarter inch ruled graph paper is well suited to preliminary

graphical layout of the user interface panels.

After the initial analysis and design, NPSPD is executed and used to create the required

panels and actuators for an interface. The panels and actuators are customized as to

location, size, label, value display, colors, etc. At convenient times during the development,

the NPSPD interface layout can be saved to an intermediate file for later recall and

modification. We recommend saving the interface during development because this

provides backup versions in case the computer malfunctions or some of the design

modifications are deemed inappropriate and the developer decides to return to an earlier

version of the design.

Once the design is sufficiently implemented within NPSPD to warrant testing, code

generation produces compilable C-language source code in three files: Userfpanel.h,

User.panel.c and User.panel_fn.c. The developer introduces the interface modules into

In the text of this thesis, italicized text refers to procedures, variables or statements
from NPS Panel Designer and ToolBox source code.

24

the application or the application code into the interface control module or both. Chapter 7

presents a detailed discussion of the code generation and application linking.

The developer compiles and links the user interface and application. He tests the user

interface in the context of the application and feeds the results back into a redesign of the

interface. NPSPD may be used repeatedly to refine and expand the interface design. Most

initial NPSPD interface implementations can be produced in a matter of a few minutes.

Then time may be devoted to the details of the application and the fine points of the user

interface. Refinements and improvements are easily implemented.

C. NPS Panel Designer

The NPSPD environment, shown in Figure 3.2, consists of a Palette I," actuators and

one or more workspace panels. The opening NPSPD copyright panel remains displayed

during the initialization sequence, approximately 3 seconds.

Figure 3.2 Opening Layout of PD

25

1. Palette and Actuators

The Palette, depicted in Figure 3.3, presents all of the actuators provided by the

Panel ToolBox for development of user interfaces. The representations for the Buttons,

Dials and Sliders are default versions of each of those actuators. All other actuators are

made available via labeled selection buttons.

Figure 3.3 NPSPD Palette

In the lower portion of the Palette, the Workspace Status Display presents the

name and size of the current workspace, the status of workspace auto-alignment and layout

grid size, the location in panel coordinates of the mouse cursor, and the location and size of

26

the current actuator on the current workspace. These fields provide continual readouts of

layout information useful to the developer.

ToolBox actuators include: momentary buttons, toggle buttons, horizontal and

vertical sliders, dials, menus, file-views, list-views and directory-views, custom frames,

outline boxes, type-in and type-out fields, meters and stripcharts. Table I presents a

complete list of the basic types of ToolBox actuators. The NPSPD Reference Manual

provides a detailed description of each actuator.

box meter
button scroll
cycle slider
dial slideroid
dirview stripchart
fileview title
frame typein
listview typeout
menu

Table I ToolBox Actuators

A basic actuator abstract data-type provides the foundation for all of the diverse

ToolBox actuators. Attributes are properties common to all actuators and are recorded in

the actuator base structure. Attributes include location and size, value, minimum and

maximum values allowed, label, value display format, etc. Each actuator adds unique

details to the basic attributes. Details are recorded in a detail structure specific to each

different actuator and allow for variation of appearance and function within types of

actuators. As an example, the details associated with a Dial include the shape (CIRCLE or

RECTANGLE), the number of major and minor tics on the Dial face, and the fine control

factor. The NPSPD Reference Manual presents a complete description of actuator

attributes.

2. Workspaces and Panels

Within NPSPD, a workspace is any one of the set of panels onto which the

developer positions actuators. It is the blank slate on which the developer designs the user

27

interface. Other panels such as the Palette, Actuator Editor, Color Editor, Panel Editor, etc.

are a part of NPSPD but are not available as workspaces.

When NPSPD is initiated, a single workspace panel is presented. Any number of

additional workspace panels may be created and modified to participate in the interface

under development. All workspaces may be cleared or deleted according to the developer's

desires. Each workspace panel exactly represents the user interface panel generated by the

code generator. Functionality must be included by the application developer.

D. Interaction with NPSPD

NPSPD supports three means of interaction control: direct manipulation using the

mouse, feature selection using the keyboard and feature selection using pop-up menus. The

mouse provides control of interface layout, actuator placement and actuator modification.

Function keys and selected special keys of the keyboard provide the primary means for

selection of design tools, editors and managers. Pop-up menus provide an alternate means

of selection.

1. Mouse

The mouse consists of the on-screen cursor and the mouse control unit with its

optical sensor, reference pad and three selection buttons. The mouse-cursor is displayed as

an arrow in the Palette and as a cross inside all workspace panels. "Left-mouse", "middle-

mouse" and "right-mouse" refer to the left, middle and right mouse buttons, respectively,

in conjunction with the mouse-cursor position. The location of the mouse determines the

current panel and current workspace.

a. Left-mouse

The left-mouse controls the operation of actuators (e.g., toggle buttons, slide

sliders, or set dials). Left-mouse down activates an actuator and its associated host panel,

or the panel only if the mouse-cursor is not on an actuator. Left-mouse up de-activates the

actuator and/or the associated panel. The left-mouse functions both within NPSPD and

within generated user interfaces.

28

b. Middle-mouse

The middle-mouse selects an actuator as current within an NPSPD workspace

or the Palette. Pressing and releasing the middle-mouse selects an actuator. Pressing and

holding the middle-mouse moves or re-sizes an actuator. The middle-mouse functions only

within the NPSPD environment and NOT within generated user interfaces.

c. Right-mouse

The right-mouse controls menu selections. Pressing the right-mouse within

any workspace pops up the NPSPD main menu of tools, editors and managers. Positioning

and releasing the right-mouse while the desired choice is highlighted activates NPSPD

processing associated with that menu choice. The right-mouse functions both within

NPSPD and within generated user interfaces.

2. Keyboard

NPSPD provides direct access to all of its tools, editors and managers via function

keys as described in Table UI. Experienced developers speed the development process by

F1 On-line Help Manager
F2 Actuator Auto-alignment
F3 Layout Grid Display
F4 Layout Grid Size
F5 Create New Workspace
F6 Clear Current Works jxcc

F7 Delete Current Workspace
F8 Panel Editor
F9 Actuator Editor
F10 Color Editor
F11 Intermediate File Manager
F12 Source Code Generation Manager
Insert Copy the current workspace actuator if any
Delete Delete the current workspace actuator if any
Backspace Delete the current workspace actuator if any
Ctrl Fine control of actuator value
Esc Exit NPS Panel Designer

Table II NPSPD Keyboard Functions

29

use of the function keys rather than the pop-up menu system. NPSPD includes both in

keeping with the flexibility requirements of an effective user interfr-,e. The insert, delete

and backspace keys are active to provide direct actuator copy and delete functions on a

workspace. The control key (Ctrl) modifies the behavior of some actuators to yield a fine

control operation. Escape provides direct exit from the Panel Designer.

3. Menu

NPSPD provides alternate access to design tools and features via pop-up menus.

Table HI presents the NPSPD menu selection hierarchy. Upon pressing the right-mouse

button within any workspace, NPSPD presents the main menu. Sub-menus appear as the

developer makes a roll-off selection.

Main Menu Selections: Sub-menu Selections:

Layout Tools...
Auto Align On/Off
Layout Grid On/Off
Set Grid Size

Workspace Tools...
Create new Workspace
Clear Current Workspace
Delete Current Workspace

Panel Editor
Actuator Editor
Color Editor
File Manager
Code Generation
Quit

Table HI NPSPD Menu Selections

4. Current Workspace and Actuator

NPSPD denotes the workspace on which the mouse-cursor is located as the

current panel and the current workspace. Design tool and editor actions take effect in the

current workspace. If the mouse-cursor is on the Palette or outside of all of the panels, there

is no current panel or current workspace.

30

Each NPSPD panel may have one actuator selected and designated as the current

actuator. Selection via the middle-mouse button displays a white highlight outline around

the body of the actuator. NPSPD references the current actuator of the Palette when adding

new actuators to a workspace using the middle-mouse button.

5. Workspace Tools

NPSPD provides three tools for managing the workspace environment. They are

create a new workspace, clear an existing workspace and delete an existing workspace.

Workspace tools are available directly using function keys as described in Table II or via

the NPSPD pop-up menu using the right-mouse.

6. Customization and Layout Tools

NPSPD provides customization tools to support detailed design of panels and

actuators. These tools include the Panel Editor, Actuator Editor and Color Editor. Chapter

4 describes each tool. NPSPD also provides selectable auto-alignment of the actuators on

a workspace panel. When auto-alignment is on, NPSPD moves all actuator origins (lower

left comer) to the nearest layout grid intersection. New actuators also align to the grid. Grid

size is selectable from a sub-menu as 5, 10, 25, 50, 75 or 100 panel units. The layout grid

may be displayed independently of the auto-alignment feature.

E. Addition, Deletion, Modification of Panels and Actuators

A workspace may be positioned anywhere on the screen using the left-mouse on the

panel's window border. The panel is resized by pressing the left-mouse while the cursor is

on any one of the comer resize handles, then dragging the window outline to a desired

shape. If the border has been de-selected for a particular panel, that panel may not be moved
or resized. The Panel Editor discussed in Chapter IV enables modification of all of the panel

attributes. NPSPD workspace tools enable addition and deletion of workspace panels

providing a confirmation prompt before the action is finalized.

Actuators may be added to a workspace in two ways, from the Palette using the

middle-mouse or from the current workspace using the NPSPD copy tool. The left-mouse

button is used to select an actuator icon on the Palette as current. The mouse-cursor is

positioned on the workspace at the location for the origin of the new actuator and the

31

middle-mouse button is pressed and released. NPSPD creates and positions a new actuator

at the specified location. The origin of each actuator is its lower left corner. The alternate

way to add actuators to a workspace panel is to select an actuator on the workspace as

current using the left-mouse button. Pressing the Insert key or selecting the copy option

from the Layout Tools sub-menu causes NPSPD to create an exact duplicate of the current

actuator. The new actuator is positioned above and to the right of the original one.

Actuators may be moved and resized on a workspace by placing the mouse-cursor

on the actuator and holding the left-mouse button down. Figure 3.4 maps the selection areas

associated with each actuator body to the resulting NPSPD modification.

C B C

B A B

C B C

A - move the actuator,
B - resize by moving the selected side.
C - resize by moving the two selected sides.

Figure 3.4 NPSPD Actuator Move/Resize Areas

F. Intermediate File

The File Manager feature of the NPSPD, discussed in Chapter VI, enables the user to

save and recall workspace designs. NPSPD writes all of the pertinent information for a

workspace to an ASCII file called the intermediate file. This highly structured file enables

the user to store and recall uncompleted work, combine two or more separate designs, and

modify designs manually (outside of the NPSPD environment) by using any text-based

editor. Appendix E presents a sample intermediate file.

32

G. Source Code Generation and Application Linking

One of the most powerful features of the NPSPD is its ability to generate source code

that corresponds to an interface design. Using the Code Manager as described in Chapter

VII, the developer generates source code for the current workspace or all workspaces. The

code may then be modified to communicate with the application using clearly defined entry

points. The modified code is compiled and linked with the application, providing a custom

interface.

There are two methods of integrating an interface designed with the NPSPD into an

application. The first method uses the framework of the code generated by the NPSPD and

integrates the target application's control features using the NPSPD provided entry points.

We recommend this technique for users that are designing an application from the

beginning.

The second method involves integrating an interface designed with the NPSPD into an

existing application by discarding the bulk of the NPSPD code generated for the interface

and using only those functions necessary to initialize, control and draw it. This technique

integrates a graphical user interface into applications that either don't have one, or have one

that is considered inadequate. Chapter VIII presents a complete NPSPD application.

Appendix D presents sample code generated by the NPSPD.

H. Compilation

Figure 3.5 presents an example of the instructions required to compile the interface

source code produced by NPSPD. The Panel ToolBox library, npspanel.a, must be

available to the developer via an appropriate directory path as shown.

33

cc -o user-name UserPanel.c UserPanel-fn.c /nps-path/ib/npspanel.a

-Ilnps-path/include -02 -align 16 -G 0 -Ics -l-s -lfmn -Im

/nps-path must be defined as the proper path to the NPS Panel ToolBox.

/nps-path = In/gravy I1/work/zyda/npspanel in the current release.

The resulting file 'user-name' may be executed.

Figure 3.5 NPSPD Source Code Compilation

34

IV. NPSPD DESIGN TOOLS

A. Panel Manager

The Panel Manager enables the user to interactively customize workspace panels. This

tool is opened either by pressing the F8 key or selecting Panel Manager from the pull down

menu. Figure 4.1 is an example of the Panel Manager window.

Figure 4.1 Panel Manager

The first typein across the top of the window is used to attach a comment to the panel.

This comment will be saved in the intermediate file when the workspace is saved. The

35

second typein is used to change the title of the panel. Changes to this field will be reflected

in the title bar of the workspace that is being edited.

The next group of typeins on the left side of the window are used to set the location

and size of the panel. Changes to any of these parameters are immediately reflected in the

panel. Below the panel location inputs are six typeins that are used to modify the world

coordinates of the panel. These values only take effect if the panel is drawn in Screen

Relative mode. Across the bottom of the window are three typeins that enable the user to

set the panel's color table, scale factor and grid size.

On the right side of the window are nine sets of radio buttons. These buttons, which

can be either ON or OFF, are used to set various flags for the panel. Refer to the User's

Manual for a complete explanation of each flag and its meaning.

Finally in the bottom right comer of the window are two buttons. The Accept button is

used to make any changes to the panel's parameters permanent. The Cancel button is used

to undo any changes made to the panel in the current editing session and restore it to its

previous state. Pressing either of these buttons completes the panel editing session and

closes the window.

B. Actuator Manager

The Actuator Manager enables the user to interactively customize actuators. This tool

is opened either by pressing the F9 key or selecting Actuator Manager from the pull down

menu. Figure 4.2 is an example of the Actuator Manager window.

The first typein across the top of the window is the actuator comment field. Comments

entered in this typein will be saved in the actuator's permanent comment field in the

intermediate file when the actuator's host panel is saved. Below the comment typein is the

label typein. This field is used to specify the label for the actuator.

Directly below the label typein are two buttons. The first is marked Label and it is used

to control the location of the label string. The second is marked Value and it controls the

location of the value output string. The position of these strings is determined by selecting

one of the 16 position buttons directly below these two buttons. The 13 relative position

buttons surrounding the box are defined as default positions. If a fixed postion is desired,

either the Fixed button or the Fixed - Center button is selected. The fixed position is then

36

set by entering the appropriate x and y coordinates in either the Label Location typeins or

the Value Location typeins.

Figure 4.2 Actuator Manager

The actuator's position and size are set with the Actuator Location typeins. The initial,

minimum and maximum values associated with the actuator are set with the appropriate

typeins in the lower left side of the window.

The format of the value output string is set by entering the appropriate Unix format

string in the Value Format typein. The font factor for the label and value strings is set with

the Label and Value Font Factor typeins, respectively. Finally, the color table for the

actuator is set with the Color Table typein.

The Accept button in the lower right side of Figure 4.2 is used to make any

modifications to the actuator permanent. The Cancel button is used to undo any changes

37

made to the actuator in the current editing session and restore it to its previous state.

Pressing either of these buttons completes the editing session and closes the window.

C. Color Manager

The Color Manager enables the user to interactively customize colors for actuators and

their host panels. This tool is opened either by pressing the F10 key or selecting Color

Manager from the pull down menu. Figure 4.3 is an example of the Color Manager window.

....

Figure 4.3 Color Manager

The NPSPD allows users to define up to eight custom color tables. Within each color

table are 24 pre-defined panel and actuator colors. The first eight colors in the table are the

basic colors, such as black, white, red, etc. These colors can not be changed by the user.

The remaining 16 colors, defined as Panel Background, Actuator Body, etc. can be

modified using the Red, Green and Blue sliders. As these sliders are moved, the resulting

RGB color is displayed in the Color Box in the lower left comer of the window. The

38

corresponding color in the actuator or panel is also drawn, if applicable. When the desired

color is obtained, pressing the Store Current Color button will make the modification

permanent. This must be done for each modified color. Colors can be restored to their

default values at any time using the two Reset buttons as appropriate. The functionality of

the Accept and Cancel buttons is the same as the Actuator and Panel Managers.

D. Intermediate File Manager

The Intermediate File Manager tool enables the user to save and recall panel designs.

Refer to Chapter VI and Figure 6.1 for a description of its use.

E. Source Code Manager

The Code Manager tool enables the user to generate source code that corresponds to

an interface design. Refer to Chapter VII and Figure 7.1 for a description of its use.

F. Information Manager

The Information Manager displays to the user various messages during the NPSPD

session. It is opened by the system when an action by the user either causes an error or can

not be completed. It is closed by pressing the Continue button. Figure 4.4 is an example of

the Information Manager window.

Figure 4.4 Information Manager

39

G. Help Manager

The Help Manager provides the user on-line NPSPD manual pages. This tool is opened

by pressing the FI key. Figure 4.5 is an example of the Help Manager window.

The desired set of manual pages is selected by pressing the appropriate button. The

user can scroll through the text using either the up and down arrow buttons or the scroll bar

on the typeout. The Help Manager window is closed by either pressing the FI key or the

Close key.

Figure 4.5 Help Manager

40

V. NPSPD TOOLBOX LIBRARY

The NPSPD ToolBox provides a library of panel and actuator structures with the

access and control functions necessary to implement graphical user interfaces. The

ToolBox is designed so that default settings for the panels and actuators are sufficient to

build a basic interface. Modifications tailor the interface to the needs of the application.

This chapter describes the contents of the ToolBox including examples of programming

level use. The NPSPD Reference Manual provides a complete description of the Panel

ToolBox and its use. Figure 5.1 presents an example of the creation and modification of a

panel with a single Dial actuator.

Panel *p; f* Temporary panel pointer */
Actuator *a; f* Temporary actuator pointer *1

p = create.panel 0;
setpanel-locaion(p. 20, 56);
setpanel-size(p, 720,534);
setattribute(p, visible, TRUE);
setattribute(p, fixed, FALSE);
setpaneltitle(p. "User_Panel");
seLattribute(p, colorjtable, 1);
append.panel(p, PaneLList);

a = create..actuator(dial);
setactuaorJocation(a, 77.5, 119.5);
setactuator-size(a, 75. 75, 2);
set_actuator label(a, BOTTOM, 10, "Object Rotation Control");
set_attribute(a, activefunc, rotate object);
setdetail(Dial, a, major_tics, 4);
setdetail(Dial, a, minor_tics, 1);
set.detail(Dial, a, winds, 1);
set detail(Dial, a, finefactor, 0.1);
insert_actuator(a, p);

Figure 5.1 Creation and Modification Example

A. Initialization Procedures

The Panel ToolBox requires several initialization steps to ensure proper operation.

InitializeTooloxO sets up the ToolBox environment, initializing global state variables,

41

panel management linked lists, the event queue, keyboard buffers, color tables, and fonts.

Panel and actuator creations and modifications follow. There is no initialization constraint

on either panels or actuators except that the host panel for each actuator must exist before

that actuator may be added. Figure 5.2 presents the initialization code generated by NPSPD.

void initializemainO /* initialize panel environment */

initializeToolBoxO; /* initialize NPS Panel ToolBox */

initialize_.panelsO; /* Initialize the control panels */

initialize_actuatorsO; /* create the actuators */

initializecolorsO; /* initialize user defined colors */

/* ----- initialize all other aspects of main program. *1

user_iniuqueueo; /* initialize event graphics queue "1
userinit menuO; /* initialize PanelDesigner menus */
user init cursor0; /0 initialize special cursors */
userinitoverlayO; /* initialize overlay planes & color

------ User define initializations are called via user_init_main. */

user-init-maino; P user defined main initializations *

Figure 5.2 NPSPD Initialization Sequence

B. Creation Procedures

The Panel ToolBox provides two functions for creation of default panels and default

actuators. Createfpanel(), which requires no arguments, allocates and initializes a panel

data structure. CreateactuatorQ, requires an initialization function as its single argument

and allocates an actuator basic data structure and unique detail structure as required by the

initialization function. Both create functions return a pointer to the new object. Table IV

presents a list of the initialization functions that may be used as an argument for

create-actuator).

42

€1

basic dirview scroll
box fileview slider
bufferact frame vbar_slider
button list_act vstrip-slider
simple-button listview hbarslider
toggle-button menu hstrip-slider
radio_button arcmeter slideroid
arrowbutton filledarc_meter stripchart
doublearrowbutton dialmeter dual-stripchart
label_button filleddiaLmeter hstripchart
cycle vbarmeter vstripchart
dial vstrip_meter title
squaredial hbarmeter typein
rounddial hstripmeter typeout

Table IV ToolBox Actuator Initialization Functions

C. Insertion Procedures

Once a panel is created, it must be inserted into PanelList, the linked list of panels

maintained by the ToolBox. Insert.panel() places the new panel at the head of the list.

Append..panel() places the new panel at the tail of the list. The order of Panel List

determines the order of panel processing and display. The linked list is traversed from head

to tail.

Likewise after an actuator is created, it must be attached to a panel or in some cases to

a parent actuator. Insertactuator() and append actuator() add the new actuator to a

panel's actuator list, at the head and tail respectively. Addsubactuator() inserts a

specified actuator into another actuator's sub-actuator list (sa). Sub-actuators are used by

several compound actuators including the Dirview, Fileview and Frame.

D. Modification Procedures

The Panel ToolBox provides a broad compliment of functions for modifying the

attributes and details of panels and actuators. The designer directly controls the appearance

and function of an interface by way of these modification functions. Modifications may be

made both before and after the panel or actuator is added to the interface.

Set.panellocationO and setpanel-sizeO position and size a panel.

Setactuatorlocation() and setactuatorsizeO position and size an actuator.

43

SetminvalueO and setmaxvalueO set limits on the value range for an actuator. The

NPSPD Reference Manual lists and discusses all of the ToolBox functions, their arguments

and their use. Two other general modification functions, set_aaributeO and set-detail(),

are discussed below.

1. Set attributeO

Each of the attributes maintained in a panel or an actuator base structure may be

modified using the set_attributeO function. As depicted in Figure 5.1, the arguments for the

function call are the panel or actuator pointer, the attribute field name (e.g., visible and

activefunc), and the value to be assigned to that attribute. Although some attributes are

normally accessed and set by specialized functions such as setactuatorsize(), they may

also be set using the set attributeO function. An exception applies to the string attributes,

title, label and value_fint. These attributes must be set using the specialized functions

provided by the ToolBox, set_paneltitle 0. set-actuatorlabel() and setvalueJformat(.

2. Set detailO

Set detail() provides the means to modify actuator detail parameters. The function

call requires four arguments: the actuator detail data-type, the actuator pointer, the detail

field name (e.g., major tics and minortics), and the value to be assigned to that detail field.

A specialized string function, set detail stringo, provides the means to set an actuator

detail string field (e.g.,the Typein ouf field).

3. Binding Modifications

Modifications made to panels and actuators may affect several other aspects of the

object. Fix panel() andfix_actuatorO ensure that all inter-related aspects of the object are

adjusted after modifications are completed. Fix functions are specific to each panel and

actuator, and they are automatically executed by the ToolBox when any of the insertion

functions are called. Normally modifications are made immediately following creation and

prior to insertion, thus binding is automatically ensured by the ToolBox. However,

modifications may be needed at other points in an application program, possibly in

response to user actions. After changes to the attributes of a panel, fix ..panel() should be

44

explicitly called, and after changes to the attributes or details of an actuator,fixactuatorO

should be called.

E. Processing Cycle

A graphics application is normally structured with a main program loop that repeatedly

calls several functions. These functions typically include input processing, followed by

interface display update, followed by applications calculations and display update. Figure

5.3 presents the main function and processing support functions generated by NPSPD and

supported by the Panel ToolBox.

Control of the interface consists of processing the mouse, keyboard and other device

inputs in processprogramqueueO and processing the interface panels and actuators

based on those inputs in process_panels). The ToolBox manages the necessary state

variables for mouse position, button action and keyboard action. ResetTooIBoxQO and

processToolBox Q() manage the event queue with respect to the interface. Event tokens

are also passed to the application program via user.process _queueO. Process_panels()

manages the selected panel and selected actuator ensuring that actuator state and value

reflect the user mouse and keyboard inputs.

F. Processing Techniques

The Panel ToolBox supports optional, developer defined action functions that are

executed during user activation of a panel and/or actuator. Panels and actuators have three

pointers that may be set to reference the developer defined functions. These three attributes

are downfunc, activefunc and upfunc. If they are assigned application functions, downfunc

executes once when the left-mouse button transitions down, upfinc executes once when the

left-mouse button transitions up, and activefunc executes each time process..panels() is

called in the application main loop. These function references provide a powerful control

link for the interface developer.

The state of each panel and the state and value of each actuator is available to the

application program. State testing functions including is._active(, is_visible(,

is selectable() and test_flagO return a Boolean result. State flags may be altered under

45

maino

initializemainO; /* initialize main program */

forever (/* Panel main loop */

control_program(PanelList); /* process controls and queue */
drawonrol_panes(PanelList); /* draw user control panels & acts */
userdisplayO; f* handle to call user functions */

void control-program P Control program operation */
(

PanelList *panel-list t* specified panel list */
)

process .program-queueo; J* Process the graphics event queue */
process._panels(panel-list); /* Control panels based on user input */

void processprogramqueue 0 f* Proess graphics event queue */

short TOKdevice, P Graphics event queue device token */
TOKvalue; P Graphics event queue token value

reset_ToolBoxQO; P/ Prepare ToolBox for input process *1

while (qtesto) (f* Process all tokens available "1

TOKdevice = qred(&TOKvalue); p Standard ToolBox input processing */
processToolBoxQ(PaneLList. TOKdevice, TOKvalue);

switch(TOKdevice) ((User Program specific Q processing */

case RIGHTMOUSE: P Right Mouse Controls Menus
if (TOKvalue =-- DOWN) /* on TransitionDown process menu */
user-process-menuo; /f User defined menu processor */
break;

P / end switch */

P ----- User defined queue function receives all TOKENs processed. "1

user..processjqueue(TOKdevice, TOKvalue);

} end while qtesto */

Figure 5.3 NPSPD Processing Functions

46

application control using the set attributeO function or the more specific setflagO and

clear~flagO functions. Set_valueO and get valueO modify and access an actuator's value.

Special effects may be produced by selectively controlling a panel's or actuator's state,

particularly the visible and selectable flags. Set~panelinvisibleO and set.panel-visibleO

provide the means to build an effective multi-panel interface.

G. Display Considerations

The Panel ToolBox manages the display of all interface panels and actuators. Drawing

occurs only when a change of state or value necessitates an update of the appearance.

Actuators are drawn in the reverse order of the host panel's actuator linked list. Thus if two

actuators overlap, the one inserted closest to the head of the panel's list is drawn on top.

The ToolBox provides eight modifiable color tables to support multi-color interface

designs. Each panel and actuator references one of the color tables as specified by the

color-table attribute. Changing the color-table index or directly modifying the color tables

using define colortableO under application control can produce useful effects in the

interface.

H. Efficiency Considerations

The Panel ToolBox optimizes processing and drawing algorithms so as not to degrade

real-time applications. Panels and actuators each have their own set of specific variables

that allow them to be customized for a particular use. For example, panels can be designed

so that they are only visible when they are needed, saving screen space and CPU cycles.

Similarly actuators can be designed so that they are not selectable, effectively making them

output devices (e.g., a Dial, which is normally an input device, can be configured to display

the output of a function or operation).

A panel is re-drawn completely only when required by a move or re-size action. During

other processing and drawing cases, only those actuators which have been altered and those

which have been specifically designated for redraw are drawn. The ToolBox determines

visibility and need for redraw at high levels within its hierarchical program flow and

prevents excess low level processing when it is not required. The ToolBox processes only

47

the selected panel, if any. While processing panels, the selected actuator on each panel, if

any, and the actuators requiring automatic processing are processed.

48

VI. NPSPD INTERMEDIATE FILE

The File Manager feature of the NPSPD, as shown in Figure 6.1, enables the user to

save and recall workspace designs. This is done by writing all of the pertinent information

for a workspace to an ASCII file that we call the intermediate file. This highly structured

file enables the user to store and recall uncompleted work, combine two or more separate

designs, and modify designs manually (outside of the NPSPD environment) by using any

text-based editor.

Figure 6.1 File Manager

A. INTERMEDIATE FILE LAYOUT

The intermediate file contains all of the information necessary to re-create a

workspace(s) designed with the NPSPD. The basic layout of the file consists of panel

parameters followed by actuator parameters for each panel, with at least one panel structure

and zero or more actuator structures required as a minimum. The intermediate file also can

be used to save and recall customized color table information.

49

1. REGULARITY

The layout of the intermediate file follows as closely as possible the structure of

the type definition, with basic parameters listed first followed by zero or more lines of type-

specific detail. Related parameters, such as location and size, are logically grouped together

to improve readability. All panels have the same basic information listed with no detail

necessary (panels have no type-specific detail). Actuators have the same basic information

and detail based on the type. A simple actuator type, such as a box, has very little detail,

while complex types, such as dials, have considerably more. The number of parameters

needed to accurately re-create a panel or actuator is smaller than the complete set as

specified in the type definition. This is because any of the variables in the type definitions

are related only to the editing environment and can be set with defaults when panels and

actuators are created.

2. SYNTAX

Figure 6.2 contains an example of an intermediate file produced by the NPSPD

that contains one workspace and two actuators. The language for NPSPD intermediate files

is case-insensitive, and white space is ignored.

a. File Header and Footer

The first line in the file is the reserved word header "Panel_DesignerFile",

identifying the file as an NPSPD intermediate file. During a read operation, if this line is

not found by the parser, the file will be closed, the operation will be aborted and an

informative message will appear. The last line in the file contains the reserved word

"FileEnd". This signifies the end of the file.

b. Panels

Each panel saved to the intermediate file consists of a panel header containing

the reserved word "Panel" followed by the title of the workspace, the parameters for the

panel, zero or more actuator structures, and a panel footer consisting of the reserved word

"PanelEnd". An NPSPD intermediate file can have one or more panels.

50

PanelDesignerFile

Panel BoxDial
/C This is an example of an optional permanent comment line C/
/* panel x, y, w, h */ 1010980700

/* autoalign, grid-on, grid-size */ 0025.0
/* visible, selectable, fixed, popable * 11 0 0
/* border, screenrelative, zbuffer */ 11 0
/* wl, wr, wb, wt, wn, wf */ 0.0 980.0 0.0 700.0 0.0 0.0
/* scale-factor, colortable */ 1.00

Actuator BOX
/* type, group-id, key-equivalent */ 10 -41 0
/* active, visible, selectable*/ 0 11
/* x, y, w, h, bw */ 469.5 208.5 85.0 25.0 0.0
/* color-table */ 0
1" Ilocation, label, label-font */ -13 "Box" 12.0
/* Ix, ly, 1w, lh, lbx, lby */ 24.2 1.7 36.6 21.6 4.8 5.8
/* v_location, valuefmt, valuefont, val *1 0 "%-+#4.2f" 12.0 0.0
/* initval, minval, maxval */ 0.0 0.0 1.0
/* vx, vy, vw, vh, vbx, vby */ 21.2 -27.6 42.6 21.6 4.8 5.8
/* line-width, frgnd-clr, bkgndelr */ 20-1

Actuator DIAL
1' type, group-id, key-equivaleit */ 40 -23 0
/* active, visible, selectable*/ 0 11
/I x, y, w, h, bw / 671.5 402.5 75.0 75.0 2.0
/* color-table */ 0
/* IaiocaLion, label, label-font */ 2 "Dial" 10.0
/0 Ix, ly, lw, lh, lbx, lby 0/ 22.5 -24.0 30.0 18.0 4.0 5.0
/* v_location, value fmt, valuefont, val */ 0 "%-+#4.2r 12.0 0.0
/* initval, minval, maxval */ 0.0 0.0 1.0
/0 vx, vy, vw, vh, vbx, vby */ 16.2 -27.6 42.6 21.6 4.8 5.8
/0 mode, shape, r, majorjtics, minor-tics / 2 1 33.840
P a, tw, ml, mw */ 11.8 2.7 32.1 2.7
P theta, winds, finefactor / 0.0 1.00.1

PanelEnd

CustomColors

FileEnd

Figure 6.2 Sample Intermediate File

51

The title for the panel must be a legal Unix file name. Following the title is an

optional permanent comment line. Next are six lines containing all of the information

needed to create a workspace. Following the panel information is the actuator data.

c. Actuators

Each actuator contains an actuator header and the parameters for the actuator.

The actuator header consists of the reserved word "Actuator" followed by a reserved word

identifying the actuator's basic type (Dial, Box, etc.). Next is another optional permanent

comment line followed by nine lines of information basic to all actuators, including size

and location, label string and location, and value location and format. Following this

information are a variable number of lines containing detailed information unique to each

type of actuator. For the first actuator in Figure 6.2, a Box, there is only one additional line.

For the second actuator, a Dial, five additional lines are needed because of the added

complexity.

d. Custom Colors

After the last line of the last actuator (in this example, the Dial) is a line

containing the reserved word "CustomColors". The File Manz;, r window contains a

toggle button for saving and recalling custom colors (see Figure 6.1). If this option is

selected, any colors that are modified during the cu.rent NPSPD session will be written to

the intermediate file immediately after this line. When the file is read back in, the color

tables in the working environment of the NPSPD will be modified with these colors.

e. Comments

The File Manager generates the same standard comments each time a workspace

is saved. These standard C programming language comments desrcibe the parameters listed

on each line of the file, making editing easier. They are discarded by the parser when the

file is read. They can be modified and additional comments can be added anywhere in the

file, but they will be lost the next time the file is read and then saved. Permanent comments

that will be retained from session to session are allowed, but they are limited to one line in

length, they must be bracketed by the characters "/C --- C/", and they must immediately

52

follow the title line for panels or actuators. The sample intermediate file in Figure 6.2

contains a permanent comment for the panel, but not for the actuators.

B. PARSER

A syntax-directed, recursive descent parser is used to read the intermediate file. The

parser reads and acts on tokens created by a lexical analyzer while moving through the file

recursively, following the syntax described above. It has a limited error analysis capability

in that if it encounters an unexpected token, it will immediately abort the read operation and

report to the user the general area of the problem. The parser currently has no error recovery

capabilities, and we recommend this be added in future revisions.

1. Lexical Analyzer

The lexical analyzer reads a line of the file at a time and breaks it down into blocks

of character strings. Blank lines, standard C programming language comments and white

space (tabs, spaces, carriage returns, line feeds, control characters) are discarded. Each

string is defined by a token identifier: GENID for alpha-numeric strings,

T_DECIMALLITERAL for numbers, TCOMMENT_TEXT for permanent comments

and T_STRLITERAL for alpha-numeric strings enclosed in double quotes. If an illegal

character is encountered, the token TERROR is generated internally, a warning message

is sent to the console, the string is discarded and the next string is read.

2. Reserved words

When a GENID token is generated by the lexical analyzer, a function is called to

check if the string is a reserved word (file header, panel header, etc.). A very efficient hash

function that is an implementation of the reserved word table uses the first letter of the

string to enter an array holding all of the reserved words for the NPSPD. It then uses a

predefined offset to check if the string is among those strings starting with the same first

character. If the string matches a reserved word, its unique token identifier (TFILEHDR,

T_PANELHDR, etc.) is returned, otherwise the general identifier GENID is returned.

Appendix C lists reserved words for the NPSPD.

53

3. Numbers

In the case of TDECIMAL_LITERAL tokens, the lexical analyzer builds a string

in the form of a number, including a leading '-' sign for negative numbers and a decimal

point for decimal numbers. If a '+' sign is encountered and the next character is a digit, the
'+' sign is read and discarded. Spaces within the digits of the number are not allowed.

4. Comments

Standard C programming language comment strings are discarded by the

lexical analyzer. Permanent comments optionally associated with each panel and actuator,

as denoted by a leading 'IC' and a trailing 'C/', will return the TCOMMENTSTR token.

5. Errors

The tokens returned by the lexical analyzer are used to create panels and actu' rs,

so the order in which they are received is important. If the proper order of tokens in the

intermediate file is not maintained, the parser will fill fields in the panel or actuator

structures with erroneous data, and then either have extra tokens or not enough tokens at

the end of the file. For this reason error messages produced by the parser will not always

indicate the exact location of the problem. However they will indicate that a problem exists

if it is not immediately obvious. The result of parsing an erroneous intermediate file is

unpredictable since the panel and actuator structures are created as they are read.

C. MODIFICATIONS TO VALUES

The layout of the intermediate file lends itself to easy modification. The majority of

editing tasks can be done interactively using the Actuator, Panel and Color Editing features

of the NPSPD. However some types of modification, such as rearranging the order of

panels and/or actuators, must be accomplished using a text-based editor.

54

VII. NPSPD SOURCE CODE GENERATION

One of the most powerful features of the NPSPD is its ability to generate source code

that corresponds to an interface design. Using the Code Manager, the user is able to

generate source code for the current workspace or all workspaces, and then modify that

code using clearly defined entry points. The modified code can then be compiled and linked

with an application, providing a custom interface in a minimum amount of time.

A. Code Manager

The F12 key in the NPSPD opens the Code Manager, as shown in Figure 7.1. The

Current Workspace typein contains the title of the workspace that was current when the F12

key was pressed. Any valid workspace title can be entered in this field. The default

generati3n mode is for the current workspace only. This can be changed by pressing the

appropriate button (either Current or All). If Current is selected, code will be generated for

the workspace corresponding to the Current Workspace field. If All is selected, code will

be generated for all of the workspaces on the screen regardless of the contents of the

Current Workspace field. The name of the output files can be any legal Unix file name, and

does not have to be the same as one of !he workspaces.

:..: - '..::-'.

12, . . ::'::::

Figure 7.1 Code Manager

55

B. Generated Code

The NPSPD Code Generator generates three files that are then modified for use in an

application. If the title of the file name in the Code Manager is 'User_Panel', the three

generated files will be UserPanel.c, UserPanelfn.c, and UserPanel.h. The first file

contains all of the functions needed to initialize, display and control the user defined

panel(s) created within NPSPD using the NPSPD ToolBox. The second file contains the

user modifiable functions needed in support of the panel(s) generated by the NPSPD. The

third file is the header file for the two source files. Refer to Appendix D for a complete

listing of these three files. Refer to the NPSPD User's Manual in Appendix A for detailed

instructions on modifying the generated code.

1. User Panel.c

This file is complete as generated, but can be modified by the user. The most likely

area of modification is in the creation of the panels and actuators in initialize_panelsO and

iniializeactuatorsO and the modification of colors in initializecolorsO. Any parameter

for a panel or actuator can be changed, taking care to maintain the proper structure and

function. Figure 7.2 is an example of the main loop in User_Panel.c.

maino

initialize maino; /* initialize panel environment

forever (/* Panel main loop */

control program(Panel List); /* process controls and queue */

drawcontrolpanels(PanelList); 1 draw control panels & actuators */

/ ------ User designed calculations and 2D or 3D drawing functions are */
/* ----- accessed via userjdisplayo; User must manage any extra */
* --- windows required */

user-displayO; /* handle to call user functions */

}S

Figure 7.2 UserPanel.c main loop

56

2. User Panel fn.c

This file is where the user ties the interface to the application. The template of the

file provides the user entry points to initialize all aspects of the interface and the

application, process the event queue, and process and display the application itself. Figure

7.3 at the end of this chapter presents an example of UserPanel_fn.c before modifications.

a. useriniqueueO

This function allows the user to add queue devices to the standard devices

initialized by the NPSPD (e.g., RIGHTMOUSE and ESCKEY). Refer to the Reference

Manual for information on additional devices queued in the NPSPD ToolBox.

b. useriit_menuo

The NPSPD generates a standard generic menu. This function allows the user

to customize the menu system.

c. useriit_cursorO

This function allows the user to customize the cursor for the application.

d. userinitoverlayo

This function allows the user to customize the overlay planes for the

application.

e. useriit_mainO

This function is called from the function main() in UserPanel.c and allows

the user to perform initializations specific to the application.

f. user-process-queueO

This function is called af'er the ToolBox has processed te queue and allows

the user to do any additional processing of queue event tokens.

g. user.process-menuO

This function allows the user to process the menu system.

57

h. userdisplay()

This is where the user will do the bulk of the processing for the application.

It is called each time through the drawing loop after the processing of the ToolBox control

functions is completed.

i. userexitO

Customized application exit procedures are placed in this function.

j. Entry Point Modification

Each of the source code entry points can be modified individually. However, in

some cases, changes to one function require changes to one or more others. For example,

if user processqueue() refers to a non-standard queue device, that device must frst be

queued in user init queueO. Each function is clearly documented and provides the

designer guidelines for modifying values or structures.

3. User Panel.h

This header file contains the forward function declarations for all of the functions

in the file User_Panel_fn.c, as well as the arrays holding the control panels and actuators

and global variables and constants. Any application files that reference these functions and/

or variables must include this file.

C. Compiling and Linking

Instructions for compiling and linking these files are included at the top of each file.

Refer to Chapter VIII for a detailed example of this procedure.

58

1**
* File: User_Panel_fn.c User defined calculations and *
* Version: 1.0 drawing functions *

* date: 90/12/01 *
* Author Richard M. Prevau *
* David M. King

°. ° °..... °............ ,....... *.°........ ***°°°,°°°°..°....... .. ° .. °

* Notes: *

* 90/08/13 Created. *
......... *.. *...

This file contains the User modifiable functions needed in support of
* the control panel generated by PanelDesigner. Changes and additions may
* be added to all files taking care to manage any extra windows. *
* It is used in conjunction with User_Panel.c *

* The actual name of this and the related files was derived from the
* name of the current workspace when it was produced by PanelDesigner. *
* (Substitute the actual name for 'User_Panel' in these instructions.)

* If a file by that name already existed, the PanelDesigner saved the
* the original version in a backup file as follows: *
* User_Panel_fn.c --> User_Panel_fn.c.bak

* Compile as follows: *

* cc -o user.name User-Panel.c User-Panel-fn.c /nps..path/ib/npspanel.a
* /nps.path/include -02 -alignl6 -G 0 -k_s -Igls -Ifm -Im *

* /nps..path must be defined as the proper path to the NPS Panel ToolBox. *
* /nps_.path = /n/gravyl/work/zyda/npspanel in the current release.

* The resulting file 'username' may be executed.

#define EXTERN extern /* declarations are external
#define INIT(x) /* and not initialized here

#include "gl.h" /* Graphics Library declarations */
#include "device.h" /* Device declarations */

#include "tbx.h" /* Panel Toolbox Declarations

Figure 7.3 UserPanelfn.c before modifications

59

/* User defined and modifiable constants and declarations */

#include "UserPanel.h"

/* User modifiable function definitions

void userjiniLqueueO /* User defined queue init */

...... Place user needed event queue device initializations here.

/*-- -------- -------- ----- ----- ----- -- ----- ----------- ---- ----- p1
void user_mitmenuO /* User defined menus here */

...... Place user defined menu initializations here.

main-menu = defpup Sample Main Menu %t ");
addtopup(main menu," Place menu choices here %xlO0 ");
addtopup(main menu." Quit Program %x999 ");

--1 --- ---------
void userinitcursorO /* User defined cursor init */
I
/t Place user defined cursor initializations here.

I.------ ---------------- ------- ---- ------- -------- ------ ------ - --

void userinitoverlayO /* User defined overlay init

/* Place user defined overlay initializations here. */

---....-----.------....-----.-.---.--.---- ..-.-.--..--.-.-.----.....-----.-------------- -------

Figure 7.3 UserPanel fn.c, cont.

60

void userinit mainO /* User defined main initializations

/* Place user defined initializations here.
/* This is called after all panel and actuator setup initializations. */

void user._process-queue /* User defined queue functions */
(

short TOKEN, /* Graphics event Q device token
short TOKvalue /4 Graphics event Q token value *

)

/* Place user defined queue processing here.
/0 All queued tokens will be passed to this function after they are */
/* processed by the Panel ToolBox functions. They may be used by */
/* the User's program to specify additional actions, etc. */

/4 --- ------------ ------- ---- -----------------

void user..processmenuo /* User defined menu processor */

long choice;

choice = dopup(mainmenu);

switch (choice) (

/4 --- Include other menu selection processing here. */

case MENUQUIT: /* exit the program "1
userexitO;
break;

default:
break;

Figure 7.3 UserPanel fn.c, cont.

61

void userjdisplayo /* All user calc & drawing functions

/* Place user defined calculations and display control here. */
/* This is called during each drawing loop after control panel */
/* processing is completed.

/* --
void user.exitO /* Clean up and exit the program *1

/* Place user defined exit procedures here. */

panelExito; /1 Clear and close all Panel windows */

}

* EOF: User_Panel_fn.c (lines: 851 *

Figure 7.3 UserPanelfn.c, cont.

62

VIII. COMPLETE NPSPD APPLICATION

Designing and implementing a user interface with NPSPD is a simple process that can

take as little as 15 minutes. Chapter HII discusses in detail the five basic phases that make

up the development process: preliminary design of the interface content and layout,

development of the interface in the NPSPD environment, generation of compilable source

code, modification of the interface and application source code to include appropriate

communication links, and finally, compiling and linking the NPSPD interface code with

the application code.

A. Building an Interface

We have chosen the NPS Autonomous Underwater Vehicle simulator (AUV) as the

example application. This simulator controls a submersible vehicle in three dimensions as

it navigates in various bodies of water. The application's user interface currently includes

standard pull-down menus and the IRIS Spaceball. The Spaceball controls the motion of

the AUV, and its eight buttons toggle environment flags and other choices. Currently, the

AUV simulator does not use the mouse.

The example interface to be designed will include both input and output actuators and

will utilize the keyboard, the mouse and the Spaceball. It will have five basic panels: a

viewing control panel, a button control panel, two instrument panels and a welcome screen.

The panels will contain several different types of actuators, and one of the panels will be

hidden unless called for.

1. Starting NPSPD

NPSPD is invoked by typing 'npspd' and requires no command line arguments.

The user should ensure that the NPSPD ToolBox library is accessible by their application

for compiling and linking.

Upon invocation NPSPD presents a welcome screen which remains visible while

the Palette and workspace panels are being initialized, and closes when initialization is

completed. The Palette of standard actuators is on the right side of the screen and the

63

workspace is on the left. The tide bar for each panel reflects that panel's current tide. The

lightning bolt icon, normally on the right side of the titlc bar and used to close a panel, is

not present. Figure 3.2 in Chapter III illustrates the opening layout.

2. Creating the Panels

The first step is to create the five panels. We position and re-size the first

workspace to become the first panel. We create new workspaces by pressing the F5 key.

The remaining four panels are placed using this function and the Panel Editor. The final

panel layout will be three panels across the bottom of the screen, each approximately 250

pixels high with the two end panels 300 pixels wide and the middle panel 580 pixels wide.

The fourth panel will be above the lower left panel and will be 400 pixels wide by 250 high.

The fifth panel will measure 500 X 250 pixels and will be centered in the middle of the

screen.

Next we want to set the environment tools for each paiiel. We want to draw an

alignment grid in each panel, and we also want to have the actuators snap to the grid when

they are placed or moved. To accomplish this we place the mouse in ea, panel

consecutively and press the F2 (AutoAlign) and F3 (GridDraw) keys. The default grid size

is 25 pixels. It may be changed if needed using the F4 key and menu to pick a s.andard size,

or the Panel Editor to set any size. For now we'll leave all panels at 25 pixels. Checking the

status box on the bottom of the Palette confirms that AutoAlign is now on for each panel

and the grid size is 25.

3. Customizing the Panels

After all of the panels are placed and sized, we open the Panel Editor and

customize the attributes for each panel. For all panels, we want to set the Fixed flag 'ON'

and the Border flag 'OFF'. This will prevent the user from moving or resizing the panels.

Next we want to name each panel with a descriptive tide. In our interface, these tiles will

not be visible because the panels will be drawn without borders. However it is still

advisable to do this for two reasons. First, if we later go back and turn the borders on, the

title will be displayed. Second, when we save our work to an intermediate file, a tide for

each panel will help us to keep track of individual panels and their purpose. Finally we can

64

attach a comment to each panel for documentation purposes in the intermediate file. This

is optional but also recommended. The initial layout of the panels is shown in Figure 8.1.

Figure 8.1 Initial Layout of panels for the AUV interface

4. Placing the Actuators

Each of the four panels contains unique actuators so we will step through their

design separately. The design of some of the panels can be completed interactively, while

others require that we leave the NPSPD environment in order to edit the intermediate file.

a. Viewing-Control Panel

The first panel is the Viewing-Control panel. This panel will have four

actuators: three sliders that will control inclination, azimuth and distance, and a dial that

will control the twist. To place the first slider, we move the mouse-cursor over the standard

vertical slider on the Palette and press and release the middle-mouse button. This actuator

then becomes the current actuator on the '\alette as denoted by the surrounding white box.

We then move the mouse to the location on the Viewing-Control panel where we want to

place the lower-left corner of the slider and press and release the middle-mouse button

again. This places a copy of the current Palette actuator (a standard vertical slider) on the

panel. The slider will appear to jump, oi 'snap' to the nearest grid intersection on the panel

65

because the AutoAlign tool is on. Whenever we place or move an actuator, the origin of the

actuator (lower left corner) will move to the nearest grid intersection point, in this case a

multiple of 25.

We need another vertical slider so we press the insert key on the keyboard and

an exact duplicate of the current workspace actuator is created to the right of the original

(alternatively we could have moved the mouse to the location of the second slider and

pressed and released the middle-mouse button again to place a second copy).

To move an actuator on a workspace, we place the mouse over it, press and

hold the middle-mouse button, and drag it to its new position. We now do th-is to the copy

of the original slider we just created. Next we place a horizontal slider above the two

vertical sliders using the same procedure. Finally we place a dial in the middle of the sliders

(see Figure 8.2).

i IAUTf VIEW CONTROl

- J -

i L

Figure 8.2 Initial ViewingControl panel

Now that we have placed all of the actuators, we need to edit them. We set the

left-most slider as the current workspace actuator and press the F9 key. This opens the

Actuator Editor dialogue window. Using this tool, we will give the actuator a label, set its

location and size, and attach a comment to it for the intermediate file.

66

First we will initialize the label. In the upper-left side of the dialogue window

is a typein labeled "Actuator Label". We place the mouse over this typein and press and

release the left-mouse button, activating the typein. The label of this actuator is

"Inclination" so we type that in and press return. In the middle of the Actuator Editor is a

representative box surrounded by nine small buttons with one in the center. We want to

center the label under the bottom of the actuator so we place the mouse over the bottom

center button and press and release the left-mouse button. The label now appears in the

selected position. We want the label to have a white background so we won't change that.

Next we change the font of the label from the default 10.0 point to 12.0 point by placing

the mouse over the Label Font typein, activating it and entering the desired size.

We change the width and height dimensions of the slider from the standard

25 X 200 pixels to 20 X 150 by entering the new dimensions in the appropriate Actuator

Dimensions typeins. Finally we add a comment to this slider to record its purpose in the

intermediate file. We do this by entering a descriptive statement in the Actuator Comment

typein at the bottom-left of the Actuator Editor.

If, after verifying all of the parameters for the actuator, we want to make them

permanent, we place the mouse over the Accept button in the lower right of the window and

press and release the left-mouse button. If we make changes to the actuator or open the

window and decide to not make any changes, we can press Cancel instead, and the actuator

will be restored to its original state. Figure 8.3 illustrates the final layout of the

Viewing-Control panel.

b. InstrumentPanel

The next panel to design is the InstrumentPanel. This panel will have three

different types of meters: vertical and horizontal strip meters, dial meters and an arc meter.

We select the meter icon on the Palette and drop it in the appropriate panel. The actuator

that appears is a standard arc meter. We have no way to interactively change this meter to

a different type so we'll have to place it in its approximate final location and change the

type in the intermediate file. We have the same situation with the remaining meters so we'll

create standards by using the insert key to copy the first meter and place them in their

approximate locations using the mouse. Our panel now contair ten standard meters,

67

E3 V/ewing_ Control

Li Lim

lneilnatlon Dsac

Figure 8.3 Final layout of the Viewipg Control panel

placed in their approximate final locations. Before we leave NPSPD to edit the intermediate

file, we need to assign a label to each of the meters so that we can identify them later. We

do this using the Actuator Editor. The meters will be labelled "Speed", "Pitch", "Depth",

"RPM", Roll", "Heading", "Bow Rudder", "Stem Rudder", "Bow Planes" and "Stem

Planes". For now we will place all of the labels below the actuators.

We now have to save our work and temporarily leave NPSPD environment

so that we can edit the intermediate file. First we press the F 11 key to open the File Manager

window. We want to save all of the workspaces so we press the SAVE button and the ALL

button. Next we need to enter a name for the file: this is an AUV interface so we enter

AUV-panels. When we press return, the panels are saved and the window closes. Our

workspaces have now been saved.

To edit the intermediate file, we exit NPSPD and open the file for editing

using any text-based editor. Once in the file, we move to the panel labeled

"InstrumentPanel" and locate the first actuator. which is the speed output. This is the

meter that will display the speed of the AUV. We need to change its mrtype detail field from

S11 (METERARC) to 117 (METERHBAR). Similarly we change the remaining meters

68

to their appropriate types. The modified intermediate file is illustrated in Figure 8.4 (only

the first meter is listed). Refer to the NPSPD User's Manual in Appendix A for a complete

description of actuator detail parameters and their modification.

Panel_DesignerFile

Panel Instrument-Panel
/* panel x, y, w, h */ 4249522 230
/* auto align, grid-on, grid-size */ 0025.0
/* visible, selectable, fixed, popable */ 111 0
/* border, screenrelative, zbuffer */ 11 0
/* wl, wr, wb, wt, wn, wf */ 0.0 522.0 0.0 230.0 0.0 0.0
/P scale-factor, color-table */ 1.00

Actuator METER
/* type, group-id, keyequivalent */ 110 -2400
/* active, visible, selectable*/ 0 11
/* x, y, w, h, bw */ 15.5 177.5 123.0 16.1 2.0
/* colorjtable */ 0
/* llocation, label, label font */ 9 "Speed" 12.0
/' Ix, ly, 1w, lh, lbx, lby */ 0.0 22.1 50.6 21.6 4.8 5.8
/* v location, valuejmt, valuejont, val */ 7 "%-+#4.2f" 12.0 0.0
/P initval, minval, maxval *1 0.0 0.0 1.0
/* vx, vy, vw, vh, vbx, vby */ 80.4 22.1 42.6 21.6 4.8 5.8
/* mtype, r, majortics, minor..tics */ 117 31.9 11
/* tl, tw, ml, mw */ 8.1 2.0 8.1 4.0
P* mcolor, display-limits, limitsjmt */ 160 "%-+#3.1"
/* damping-factor, historyndx */ 10

PanelEnd

FileEnd

Figure 8.4 Instrument-Panel intermediate file (Meters)

At this point, we could change other attributes of the meters, such as location

and size, but this is more easily done in the NPSPD environment where the changes can be

seen immediately. We can now verify the changes we have made and exit the file.

Re-entering NPSPD, we press the Fl1 key to open the File Manager window

and press the OPEN button. In the Filename typein we enter "InstrumentPanel" and press

69

return. The four panels we created earlier open, with the InstrumentPanel now containing

the correct types of meters. We now need to customize each meter, setting its size and

location, specifying a value location and format if necessary, and adding a comment. We

select the first actuator, the "Speed" meter, and press F9 to open the Actuator Editor

window. The label string is correct so we'll leave that. The location of the label and its font

size need to be changed however, so we'll do that. We want to place the label above the

meer and left-align it, so we press the top-left button on the location square. Next we want

the label to be 12 point font instead of the default 10 so we enter the new font size in the

Label Font Factor typein. We want a value to be displayed for this meter so we press the

VALUE button near the top center of the window. For this meter, we want to place the

value on the top of the meter and right-align it, so we press the top-right button on the

location box. The default font for values is 12 point, so we'll leave that. However we need

to change the value format string in the upper right of the window from the default "%-

+#7. lf'" to "%6.lf", which will give us a floating point number with six digits of precision

and 1 digit to the right of the decimal point. Next we need to change the size and location

of the meter. Using a rough sketch, we determine we want this meter to be 150 pixels wide

by 20 pixels high, and the reference point should be at 14, 180 (x & y). Using the Actuator

Location typeins, we enter these parameters. Finally, we add a comment for this meter,

describing it as the speed output meter.

The remaining actuators on this panel are modified in the same fashion.

Figure 8.5 illustrates the final layout of the InstrumentPanel.

c. ButtonControl Panel

Before we begin placing actuators, we can make an adjustment that will save

us some time. The current grid size for the ButtonControl panel is 25 pixels. We want the

buttons that we place on this panel to be 15 pixels apart. If we change the grid size to 5, it

will be much easier to place the buttons exactly where we want them using the mouse rather

than explicitly entering the coordinates. We can change the grid size for the panel using the

Panel Editor and the Grid Size typein. As we do this, the grid on the ButtonControl panel

and the status box on the Palette reflect the change.

70

n Instrument Panel

Speed 0.00now Rudders3F.r" ' "00 Ir I
RP Stern Rudders

Pitc LHeading] Bow Planes Stern nes

Figure 8.5 Final Layout of the InstrumentPanel

The standard toggle buttons are on the top-left side of the Palette. We have a

choice of either square or round. We select the square button and place it on the

ButtonControl panel. We want the first button to be located at 20, 200. We can either use

the mouse to move the button or open the Actuator Editor and enter the location explicitly.

Since the grid size allows us to move 5 pixels at a time, using the mouse is probably faster,

so we move the button to its final position using the mouse. The default size of buttons is

25 X 25 pixels, which is the size we want, so we don't change that. We need five more

standard toggle buttons so we place the remaining copies in the appropriate locations: we

need two columns of five buttons each, with 15 pixels separating buttons in the y direction

and 170 pixels in the x direction. Column one (x = 20) will consist entirely of standard

toggle buttons, while the first two and last two buttons in the second column (x = 190) will

be radio buttons and momentary-action buttons, respectively. The middle button in the

second column will be a standard toggle button. Accordingly we move the six standard

buttons to their positions.

The radio buttons are placed next. Select the ,quarc h:li,, button from the

Palette and place it on the top of the right column (v = 200) on the Btitton -Control panel.

71

When a radio button is placed from the Palette, two copies will be created, so we move the

second button down to the second position in the column using the mouse.

Finally we need two momentary-action buttons. These are located in the cross

on the top of the Palette. We don't need a symbol on our buttons so we select the middle

button in the cross and place copies in the fourth and fifth positions in the second column

on the ButtonControl panel.

Now that our buttons are in place, we need to edit them. Each button will have

a label on its right side using a 12 point font factor, and each should have a descriptive

comment. Using the Actuator Editor, we edit each button, entering its label and a comment.

The final layout for the ButtonControl panel is illustrated in Figure 8.6.

El ControL Buftons

F-I LJGD

Figure 8.6 Final layout of the Button-Control panel

d. ControlSurfaces Panel

The next panel to design is the ControlSurfaces panel. This panel will

contain 4 stripcharts, one each for the bow and stern rudders and the bow and stern planes.

We select the Stripchart icon from the Palette and place the first stripchart at 25-25. The

remaining three are placed at 25-150, 250-25, and 250-150. Opening the Actuator Editor,

we enter a label for each stripchart, positioning it on the top center of the actuator. We want

a value to be displayed on the right side of each stripchart so we press the VALUE button

72

on the editor and then the right middle button on the location box. We also need to change

the value format string to "%7. 1f" for each stripchart. Finally we add a comment to each

one. We don't want to display the limits for the stripcharts but we'll have to change that in

the intermediate file. Once we are done editing what we can on the stripcharts, we save our

work (we can re-use the file name AUVPanel) and exit NPSPD.

Using an editor to open the intermediate file, we move to the

ControlSurfaces panel and locate the first stripchart actuator. First we change the

display-limits flag from 1 (TRUE) to 0 (FALSE). Next we change the BindHigh and

BindLow flags from 0 to 1. Finally, we change the minval and maxval values to -40.0 and

40.0, respectively. We make these changes to all four stripcharts. The Final layout of the

ControlSurfaces panel is shown in Figure 8.7.

in contro_ Sufaes

[Bow, Planel Ister Planes

IIw Rudders Sterm Ruddersj

Figure 8.7 Final layout of the ControlSurfaces panel

e. WelcomeScreen Panel

The final panel to create is the WelcomeScreen. This panel will consist of

two Title actuators, and will only be visible in our application momentarily while the data

is initialized. We select the Title actuator from the Palette and place two copies on the

WelcomeScreen -anel, one above the other. Opening the Actuator Editor we enter the

73

label "NPS AUV" for the upper actuator. Next we change the width and height to 230 and

50, respectively. We then change the location of the actuator to 140, 180. Finally we change

the Label Font Factor to 28 point. The second Title actuator is modified in the same fashion.

The final layout of the WelcomeScreen is shown in Figure 8.8.

3 We,eecwe_

NPS AUV

Figui e 8.8 Final layout of the WelcomeScreen panel

B. Generating Code

Once we finish creating and editing the panels and actuators, we generate the source

code that will be integrated into the AUV application. We open the Code Manager window

by pressing the F12 key. First, we want to generate code for all five panels so we press the

"All Workspaces" button. Next, we have modified at least one color table so we also press

the "Save/Recall Custom Colors" button. Finally, we enter the name of the file to hold the

generated code. We enter "AUVPanelCode" and press return. Three files have now been

generated: AUVPanelCode.c, AUVPanelCodefn.c and AUVPanel_Code.h. The

next step is to edit these files, compile them and link them with our application.

74

C. Editing the Generated Source Code

For our application, the only file we need to edit is "AUV_Panel_Code.c". This file

contains the function calls to create the panels and actuators, the ToolBox initialization

calls, and the user interface main control loop. First we will verify the panel and actuator

creation calls.

1. Verifying the Panel and Actuator Creation Calls

The code generated for the creation of each panel consists of the following default

lines: panel location and size, visible flag, fixed flag, border flag, popable flag, and the title

for the panel. We specified the values for all of these parameters except the visible flag

interactively earlier when we were in the NPSPD environment. For our application we only

need to change one parameter on one panel. We only want the Control_Surfaces panel to

be visible at certain times so we set its visible flag to FALSE. This means that when the

application starts all panels except for Control_Surfaces will be visible.

2. Customizing the Code

Next we need to edit the function maino. Since we are integrating the NPSPD

code into an existing application that has its own main() function, we need to rename ours.

We thus change it to unusedmainO. We will however have to move some of its calls to the

existing mainO function. We will do this in the next section.

D. Editing the Application Code

The application's header files and source code need to be modified in order to use the

NPSPD interface. This can be accomplished using any text-based editor.

1. Header Files

The "globals.h" file in the AUV directory contains all of the global variable

definitions and forward function declarations for the AUV simulator, and is included by all

of its source files. This is where we include the NPSPD file "tbx.h", and the header file for

the generated code, "AUVPanelCode.h". The file "tbx.h" contains the variable

definitions and function declarations for the ToolBox library, and "AUVPanelCode.h"

contains the variable definitions and function declarations for the interface code. When we

75

compile the AUV code, we will be linking to the NPSPD panel library so we can simply

include these files as though they were local (in fact "AUV_PanelCode.h" is local, but

"tbx.h" is not).

Next we will define manifest constants for the names of the interface controls.

This will make the AUV source code much more readable, thus making editing easier. In

the file "AUVPanel_Code.c" are all of our control structures in the form Control[01[0],

Control[0][1, etc., and panel structures in the form ControlPaneli], ControlPanel!l],

etc. We want to define constants with more descriptive names that will be substituted for

these variables in our AUV code. For example, we can reference the interface panels by

using ControlPanelfxJ, where x is the index of the desired panel, but then we have to

remember the index number for all of the panels. By using descriptive names, such as

VIEWINGCONTROL for ControlPanel[O], we improve the readability of our code

immensely and make editing much easier. The disadvantage of this is that if the order of

the panels or actuators in the file "AUV_Panel_Code.c" changes we have to also change

our definitions. But if we exercise a little care in modifying this file, we can avoid this

problem. Figure 8.9 shows the modified "globals.h" file.

2. Modifying the Main Program

Since we are integrating the NPSPD interface into an existing application, we

have to ensure several things happen when the application is initialized and each time

through the control loop.

a. Initialization

The function main() in the AUV simulator makes a call to an initialization

function, initializeauv(. This function then makes calls to initialize each aspect of the

AUV simulator. databases, devices, etc. We need to add several calls to this function to

initialize the interface. These include: initialize maino, initializepanelso, and

initializeactuators(. The function initializemainO initializes the interface panel

environment, including default settings, colors, the event queue, the menus, the cursor and

the overlay planes. Some or all of these calls may be unnecessary in the AUV simulator,

but including them is a minor expense and ensures all necessary initializations are

completed. The function initialize_panelsO creates the interface control panels

76

1 File: globals.h
*Description: Header file for NPS AUV Simulator

/* General Include Files *
#include <stdio.h>
#include <gl/gl.h>
#include <gI/device.h>
#include <gI/spaceball.h>
#include "sysltypes.h"

I* NPSPD & ToolBox Include Files *
#include "tbx.h"
#include "AUVPanelCode.h"

/* NPSPD & ToolBox Manifest Constant Declarations - Panels
#dtefine VIEWINGCONTROL Control_Panel[OJ
#define INSTRUMENTPANEL ControlPanelil]
#define BUTITON_CONTROL ControlPanel[2]
#define CONTROL_SURFACES ControlPanel[31
#define WELCOMESCREEN ControlPanel[4]

I* NPSPD, & ToolBox Manifest Constant Declarations - Actuatorss *
#define INCLINATION Control[O] [0]
#define AZIMUJTH Control[0II1]
#define DISTANCE Control[O] [2]
#define TWIST Control[O] [3]

Figure 8.9 Modified Globals~h File

(ControlPanelljl, ControlPantellil, etc.). Finally initialize-actuators() creates the

actuators on the control panels.

b. Main Control Loop

The AUV application has a function called main -loopo. T1his function

contains the main control loop for the AUV simulator. While in a forever ko-zp, his fonction

looks for events on the queue, processes them and draws any changes. Figure 8.10 is a

simplified code segment depicting the order of events in this loop.

77

main_loop(Subptr auv)

while(TRUE) /* loop forever

if(qtestO)

while (qtestO)

sbdevice = qread(&value); /* read spaceball */
switch(sbdevice)
{

f* Spaceball functionality omitted ... *

case REDRAW:
reshapeviewport0;
break;

/* end switch /
}/* end while qtesto */

/* end if qtesto */

/* update the simulator values /
displayenvironment(auv); P contains OFF display routines *I
swapbuffersO;

)/* end while(TRUE) */
/* end main loop */

Figure 8.10 Original Main Control Loop for the AUV Simulator

The NPSPD interface needs to process queue events and draw any changes to

controls each time through this loop. Ths can be done by adding five lines of code, as

illustrated in Figure 8.11.

In order to process queue events so that the NPSPD interface can follow the

action of the mouse, we need to add calls to reset the ToolBox queue and then process the

ToolBox queue, in that order.We add our function resetToolBox_QO) to the top of the

loop, just before we check if QTEST is true. This function resets mouse transition flags and

other events that the ToolBox monitors. Next we add our call to process the latest queue

event. We do this with the function processToolBoxQ(PanelList, sbdevice, value),

inserted right after the queue event is read. This function takes the queue event and

processes it according to where it occurred. For example, if the left-rn -)use button is

78

mainloop(Subt auv)
* (

while(TRUE)

resetToolBoxQO;

if(qtestO)

while (qtestO)

sbdevice = qread(&value); /* read spaceball */
processTooBoxQ(PanelList, sbdevice, value);
switch(sbdevice)

/* Spaceball functionality omitted ... *

case REDRAW:
res qapeviewporto;
break;

/* end switch */
} f end while qtestO /

}/* end if qtestO */

/* update the NPSPD interface values
updatejanelvalues(auv);

f* update the simulator values */
display-environment(auv); /* contains OFF display routines "1
w',apbuffersO;

/* process and draw the NPSPD interface controls */
process4_anels(PaneList);
draw controlpanels(Panel List);

/* end while(TRUE) /
/* end main loop */

Figure 8.11 Modified Main Control Loop

depressed on the Viewing-Control panel, the sbdevice will be the left-mouse, the value will

be the transition down value of a mouse button, and the processToolBox_QO ftnction will

run through the list of interface pail"ls (Panel-List) and determine that the event occurred

on the ViewingControl panel. The processToolBox_QO function does not alter the queue

events, so any references made to these events subsequent to this call will be correct.

79

After the queue event is processed, we need to process the interface panels

and their associated actuators. This is done by calling the function

process-panels(PanelList). This function runs through each interface panel (PanelList)

and processes the latest queue event. The AUV simulator interface is about evenly divided

between input devices (sliders, dials, etc.) and output devices (meters, stripcharts, etc.). We

chose to process the values of the interface control devices first, then update the AUV

variables and interface. If the application interface consisted primarily of output devices, it

would be more efficient to update their values first and then process the changes to the

interface controls. However in either order the difference will be transparent to the user.

Next we need to update the status of the auv environment and the interface.

This is done in a function called update_panel_values(auv), where auv is a data structure

containing the parameters for the vehicle and its environment. This function, illustrated in

Figure 8.12, is called at the bottom of the main control loop, shown in Figure 8.11. Notice

in some cases the auv variable takes the value of the interface control (e.g. auv-

>sys.Cockpitview = COCKPIT_VIEW), while in other cases the opposite is true (PITCH

= auv->pitch). In the first case the interface control is an input device, while in the second

case it is an output device. All processing of controls and environment variables is done in

this fashion.

The last thing to do in the loop is draw the changes to the interface panels and

controls. This is done by calling the function draw_control_panels(PanelList). This

function checks each panel and actuator, determines if they need to be redrawn, and draws

them, swapping buffers as necessary. If panels are not visible they are not processed or

drawn, saving CPU cycles.

E. Linking the Application Code to the NPSPD Library

Once the interface and application code has been modified, we need to compile and

link it. The AUV application utilizes a make file to do this. We need to modify it to include

the ToolBox header file tbx.h, compile the interface code and link all of the object code to

the NPSPD Library. The modified Makefile is shown in Figure 8.13

80

void update-panel values(Sub..ptr auv)

/* Interface Panel Input Devices (sliders, dials, & buttons) */

auv->obs.inclination = (Coord)INCLINATION;
auv->obs.azimuth = (Coord)AZIMUTH,
auv->obs.twist = (Angle)TWIST;
auv->obs.distance = (Coord)DISTANCE;

/* Interface Panel Output Devices (meters & stripcharts) */

BOWPLANES = auv->deflect[O];
STERNPLANES = auv->deflect[1];
BOWRUDDER = auv->deflect[2];
STERNRUDDERS = auv->deflect[3];
RPM = auv->rpm[O];
PITCH = (float)auv->pitch;
ROLL = (float)auv->roll;
HEADING = (float)auv->heading;
DEPTH = (float)auv->depth;

if(is-visible(CONTROLSURFACES) (
set_stripchart_value(Control[3][0], (float)auv->deflect[0]);
setstripchar value(Control[3] [1], (float)auv->deflect[1]);
set_stripchartvalue(Control[3] [2], (float)auv->deflect[2]);
set stripcharLvalue(Control[3] [2], (float)auv->deflect[3J);

)

Figure 8.12 Update Panel Values Function

1. Including the ToolBox header file tbx.h

The file tbx.h is included by defining the variable INCLUDE to be the path to the

NPSPD library, and adding the statement "-I${ INCLUDE)" to the compilation line. This

effectively makes that entire directory visible to the application's files.

2. Compiling the Interface Code

In order to compile the interface code (AUVPanelCode.c and

AUVPanelCodefn.c), we need to add their object file equivalents to the OBJS

specification and their source file equivalents to the CODES specification. We also have to

81

define their dependencies, which in both cases is simply the corresponding source code and

the AUVPanelCode.h header file

SHELL = /bin/sh
C = cc -I$(INCLUDE}
LDCC = cc
CFLAGS = -g -O0 -w -G 0
LDFLAGS = -g
TBX = /n/gravyl/work/zyda/npspanelfib/npspaneLa
INCLUDE = /n/gravy1/work/zyda/npspanelfnclude
LIBES = -Ispaceball -lgls -lc-s -lmpc -lfm -Im
OBJS = dauv.o AUVPanelCode.o AUV_Panel_Codefn.o ...
CODES = dauv.c AUV_Panel_Code.c AUVPanel_Code_fn.c ...
HDRS = globals.h

all: dauv

dauv: $(OBJS)
cc $(CFLAGS) -alignl6 -ISINCLUDE) -o $@ $(OBJS) ${TBX) $(LIBES)

dauv.o: $(HDRS) $(CODES)

AUVPanel_Code.o: AUVYanelCodec AUVPanelCodeh
$(C) -C -g -w $*.c -G 0

AUVanelCode_fi.o: AUVPanel-Code_fn.c AUVPanelCode.h
$(C) -c -g -w $*.c -G 0

Figure 8.13 Modified Makefile for the AUV Simulator

F. Testing and Enhancing the Interface

Nearly always, an initial interface design undergoes extensive testing and some

enhancement before it becomes the final version. NPSPD simplifies and speeds the

enhancement process. The designer may change panels and actuators directly in the

AUVPanelCode.c file or using NPSPD as described. Minor changes, such as moving or

re-sizing an actuator, can most easily be accomplished by editing the source code files.

Major changes, such as introducing a new panel or adding several actuators to an existing

82

panel, should be accomplished in the NPSPD environment. In either case, the procedures

outlined in this chapter must be followed in order to maintain the proper communication

between the interface controls and the application.

83

IX. NPSPD LIMITATIONS AND FUTURE DIRECTIONS

This represents version 1.1 of the NPS Panel Designer and ToolBox. Several important

areas of functionality have been designed into the foundational toolbox structures and

modules, but have not been fully implemented. This section discusses limitations and

suggested future enhancements of NPSPD.

A. Limitations

1. Interactive user specification of actuator detail

All aspects of an actuator should be accessible to the user without having to leave

the NPSPD environment. Currently only the parameters common to all actuators (size,

label, etc.) can be customized using the Actuator Manager. Future versions of NPSPD

should have an editor that is detail-specific, i.e. one that displays different parameters

depending on the basic type of the actuator.

2. UNDO key for the last action

All actions, with a few minor exceptions, should be reversible. Major actions that

cannot be reversed, such as deleting or clearing a workspace, should prompt the user for

confirmation. Currently the NPSPD prompts the user prior to deleting or clearing a

workspace. However it does not have an UNDO capability.

3. Complete help

On-line, case sensitive help is essential for even the simplest applications. NPSPD

currently provides the user on-line help, but it is not case sensitive and it is general in

content. An improved help facility should be developed in future versions.

4. Identify a grouping of actuators

It is frequently necessary to modify two or more actuators in the same way.

Examples include moving, sizing, changing color schemes, etc. Currently NPSPD has no

84

such capability, and incorporating it would greatly simplify the designer's task. Grouping

could be temporary or permanent, depending on the purpose.

5. Continued development of basic actuators

This version of NPSPD provides a multitude of basic actuators, but work should

be continued to develop more. Additional types might include a text editor incorporated

within the fileview actuator, an expanded listview actuator that provides more

functionality, etc.

6. Smart Exit/Overwrite

The user should be protected from losing work. This currently can occur if the user

exits NPSPD without saving the current workspace(s). It can also occur when workspaces

are opened or read from an intermediate file into an existing workspace that has not been

saved. Future versions of NPSPD should prompt the user before such actions are

completed.

7. Additional actuators partially implemented

Frame, scroll, and cycle actuators have only been partially implemented. Further

development work is needed to complete these versatile, but complex controls.

B. Future Directions

This thesis documents many general aspects of user interfaces. It also discusses in

detail our attempt to simplify interface design, implementation and testing. The following

describes several applicable topics that should be explored in more detail.

1. Efficiency Considerations

The logic of the NPSPD was designed with efficiency as the major goal. Panels

and actuators are only drawn when needed due to a change in their appearance, and the time

taken to process panels and actuators was minimized as much as possible. The goal was to

make the CPU time needed to process and draw the interface panels insignificant as

compared to the processing time of the application.

Future work should include benchmark tests for each of the different types of

actuators. These tests would provide designers with general guidelines as to the relative

85

time needed to process and/or draw each of the different actuators. Interfaces could then be

designed with these times in mind.

2. NPSPD Design Considerations

The decisions we made in designing the look and feel of the NPSPD were not

discussed in detail. Topics such as the default color scheme, the standard size of actuators,

the functionality of individual actuators, etc., should be explored in depth. We made design

decisions based on our experiences and our research. Future students will undoubtedly

bring with them many new experiences and could very well improve upon our work.

3. Portability Considerations

The NPSPD was designed for a specific hardware. An object-oriented

programming style was used to modularize the code, but all of the graphics system calls

were targeted for the IRIS Window Manager operating system on the SGI workstations.

Future work might include looking into porting it to other platforms such as Sun

workstations.

86

X. CONCLUSIONS

The need within the military for effective, flexible and configurable command and

control workstations will continue to motivate research into real-time information

presentation. The effectiveness of an entire system depends on the user interface's ability

to transform data into information and its ability to clearly and simply provide a means to

control system operation. Because high quality interface software is costly in time and

money, designers will rely on automated development environments that speed and

simplify user interface implementation.

The NPS Panel Designer and ToolBox represents the fruit of two man-years of

research. Beginning as a tool to assist in the design of a new command and control

workstation, it quickly developed into a project of its own. Features and enhancements

added during the implementation phase helped to make NPSPD a useful and powerful

automated development environment.

Interfaces designed with NPSPD are being used in the development and testing of the

Autonomous Underwater Vehicle simulator as well as other simulation projects at the

Naval Postgraduate School. Also, NPSPD will be used to support interface design and

testing in graphics courses taught at NPS. The applications that are using interfaces

developed with the NPSPD have been a tremendous aid in finalizing this version. They

have demonstrated many of the capabilities of NPSPD and have identified a few

shortcomings.

Students utilizing NPSPD have found it to be easy to use and very flexible. Interface

designs can be quickly developed and tested, and then just as quickly fine-tuned. The code

generated by the NPSPD is well documented and provides all of the necessary entry points

for integration of the interface into an application. The ToolBox functions available to the

designer are also well documented and provide a wide range of options for manipulating

the interface panels and actuators. Most importantly, processing of the interface panels and

actuators is very efficient, saving precious CPU cycles for the target application.

87

Another strength of the Panel ToolBox is the ease with which additional details may

be added to existing actuators or entirely new actuators may be added to the ToolBox. The

modular design of the initialization, processing and drawing functions allows easy

modification. For example, the single pen stripchart was converted to allow an optional

second pen by adding the mode constant for a dual pen mode, the second chart array, and

the few lines of code in the stripchart processing and drawing functions.

We hope that the maintenance and improvement of the NPS Panel Designer and

ToolBox will continue. If so, it is a tool that can and will be used for a long time. The cost

of software development makes NPSPD a valuable tool.

88

APPENDIX A

NPS PANEL DESIGNER AND TOOLBOX
USER'S GUIDE

Introduction and Purpose

The NPS Panel Designer and ToolBox (NPSPD) is an automated development
environment that enables design, implementation, modification and testing of customized
graphical user interfaces. Pre-designed controls called actuators are provided in the Panel
ToolBox and can be placed on a workspace panel, then sized and moved as desired until a
final interface layout is developed. The layout can be saved in an intermediate ASCII file
for later editing. NPSPD includes automatic generation of compilable source code which
can stand alone or be integrated quickly into a developer's application.

Although an object oriented language such as C++ was not used in the design and
implementation of the Panel ToolBox, an object oriented approach was used. Distinct
abstract data types for the basic actuator and all detailed actuators are defined. Functions
are provided to access actuator parameters, details and values.

User
The user is expected to be a systems designer/programmer concerned with application

user interfaces. The user should be familiar with the Silicon Graphics Inc. (SGI) IRIS/4D
series graphics workstations, operating system and graphics language library as well as the
C programming language.

Environment

NPS Panel Designer and ToolBox is designed for use during implementation of
application software for SGI IRIS workstations. NPSPD produces compilable C-language
source code which can be used in any appropriate application or as a stand-alone program.

User's Guide Organization

Following this introduction, we provide six sections. The Getting Started section
discusses in general terms the NPSPD environment and its various components. The
Control section describes how to move around the screen and control the functions and
operations available in the NPSPD. The Tools section describes in detail how to effectively
use each tool and operation available in the design environment. The Modifying Panels and
Actuators section discusses the panel and actuator parameters that can be customized. The
Source Code Generation and Application Linking section discusses methods of integrating
an interface designed with the NPSPD into graphical applications. Finally, the Compilation
section presents an example of the instructions required to compile the interface source
code produced by NPSPD. In several places in this User's Guide, the reader is referred to
the NPSPD Reference Manual for further information.

89

Suggestions, questions and identification of bugs within the NPS Panel Designer and
ToolBox are welcomed. Send such comments to:

Dr. Michael J. Zyda
Naval Postgraduate School
Department of Computer Science
Code CS/Zk
Monterey, CA 93943
zyda@cs.nps.navy.mil

General NPS Panel Designer Usage -- Getting Started

Several files support the operation of NPSPD: npspd, npspd.code and npspd-man.*.
The developer should include the Panel ToolBox directory in his working directories path.
NPS Panel Designer is started by typing "npspd" at the UNIX system prompt or selecting
the npspd executable icon in the IRIS Workspace. The NPSPD copyright notice is
displayed while the Palette and workspace are initialized. When NPSPD is ready for the
developer's use, the copyright notice will be removed.

The NPSPD environment, shown in Figure A. 1, consists of a Palette of actuators and
one or more workspace panels. The opening NPSPD copyright panel remains displayed
during the initialization sequence, approximately 3 seconds.

Figure A.1 Opening Layout of NPSPD

90

Palette and Actuators

The Palette, depicted in Figure A.2, presents all of the actuators provided by the Panel
ToolBox for development of user interfaces. The representations for the Buttons, Dials and
Sliders are default versions of each of those actuators. All other actuators are made
available via labeled selection buttons.

Figure A.2 NPSPD Palette

In the lower portion of the Palette, the Workspace Status Display presents the name
and size of the current workspace, the status of workspace auto-aligrunent and layout grid
size. the location in panel coordinates of the mouse cursor, and the loc:tifnn and size of the
current actuator on the current workspace. These fields provide cntily:i , :i, lots of layout
information useful to the developer.

ToolBox actuators include: momentary buttons. toggle buttoir , h 1i-,tfl ;ind vertical
sliders, dials, menus. file-views, list-views and directory-views. cust,,m firames, outline
boxes. type-in and type-out fields. meters and stripcharts. Table I presents a complete list

91

box meter
button scroll
cycle slider
dial slideroid
dirview stripchart
fileview title
frame typein
listview typeout
menu

Table I ToolBox Actuators

of the basic types of ToolBox actuators. The NPSPD Reference Manual provides a detailed
description of each actuator.

A basic actuator abstract data-type provides the foundation for all of the diverse
ToolBox actuators. Attributes are properties common to all actuators and are recorded in
the actuator base structure. Attributes include location and size, value, minimum and
maximum values allowed, label, value display format, etc. Each actuator adds unique
details to the basic attributes. Details are recorded in a detail structure specific to each
different actuator and allow for variation of appearance and function within types of
actuators. As an example, the details associated with a Dial include the shape (CIRCLE or
RECTANGLE), the number of major and minor tics on the Dial face, and the fine control
factor. The NPSPD Reference Manual presents a complete description of actuator
attributes.

Workspaces and Panels

Within NPSPD, a workspace is any one of the set of panels onto which the developer
positions actuators. It is the blank slate on which the developer designs the user interface.
Other panels such as the Palette, Actuator Editor, Color Editor, Panel Editor, etc. are a part
of NPSPD but are not available as workspaces.

When NPSPD is initiated, a single workspace panel is presented. Any number of
additional workspace panels may be created and modified to participate in the interface
under development. All workspaces may be cleared or deleted according to the developers
desires. Each workspace panel exactly represents the user interface panel generated by the
code generator. Functionality must be included by the application developer.

Control

NPSPD supports three means of interaction control: direct manipulation using the
mouse, feature selection using the keyboard and feature selection using pop-up menus. The
mouse provides control of interface layout, actuator placement and actuator modification.
Functions keys and selected special keys of the keyboard provide the primary means for
selection of design tools, editors and managers. Pop-up menus provide an alternate means
of selection.

92

Mouse
The mouse consists of the on-screen cursor and the mouse control unit with its optical

sensor, reference pad and three selection buttons. The mouse-cursor is displayed as an
arrow in the Palette and as a cross inside all workspace panels. "Left-mouse", "middle-
mouse" and "right-mouse" refer to the left, middle and right mouse buttons, respectively,
in conjuction with the mouse-cursor position. The location of the mouse determines the
current panel and current workspace.

Left-mouse: The left-mouse controls the operation of actuators (e.g., toggle buttons,
slide sliders, or set dials). Left-mouse down activates an actuator and its associated host
panel, or the panel only if the mouse-cursor is not on an actuator. Left-mouse up de-
activates the actuator and/or the associated panel. The left-mouse functions both within
NPSPD and within generated user interfaces.

Middle Mouse: The middle-mouse selects an actuator as current w, .nin an NPSPD
workspace or the Palette. Pressing and releasing the middle-mouse selects an actuator.
Pressing and holding the middle-mouse moves or re-sizes an actuator. The middle-mouse
functions only within the NPSPD environment and NOT within generated user interfaces.

Right-mouse: The right-mouse controls menu selections. Pressing the right-mouse
within any workspace pops up the NPSPD main menu of tools, editors and managers.
Positioning and releasing the right-mouse while the desired choice is high-lighted activates
NPSPD processing associated with that menu choice. The right-mouse functions both
within NPSPD and within generated user interfaces.

Keyboard

NPSPD provides direct access to all of its tools, editors and managers via function keys
as described in Table II. Experienced developers speed the development process by use of
the function keys rather than the pop-up menu system. NPSPD includes both in keeping
with the flexibility requirements of an effective user interface. The insert, delete and
backspace keys are active to provide direct actuator copy and delete functions on a
workspace. The control key (Ctrl) modifies the behavior of some actuators to yield a fine
control operation. Escape provides direct exit from the Panel Designer.

Menu

NPSPD provides alternate access to design tools and features via pop-up menus. Table
III presents the NPSPD menu selection hierarchy. Upon pressing the right-mouse button
within any workspace, NPSPD presents the main menu. Sub-menus appear as the
developer makes a roll-off selection.

Current Workspace and Actuator

NPSPD denotes the workspace on which the mouse-cursor is located as the current
panel and the current workspace. Design tool and editor actions take effect in the current
workspace. If the mouse-cursor is on the Palette or outside of all of the panels, there is no
currmnt panel or current workspace.

Each NPSPD panel may have one actuator selected and designated as the current
actuator. Selection via the middle-mouse button displays a white high-light outline around
the body of the actuator. NPSPD references the current actuator of the Palette when adding
new actuators to a workspace using the middle-mouse button.

93

F1 On-line Help Manager
F2 Actuator Auto-alignment
F3 Layout Grid Display
F4 Layout Grid Size
F5 Create New Workspace
F6 Clear Current Workspace
F7 Delete Current Workspace
F8 Panel Editor
F9 Actuator Editor
F10 Color Editor
F11 Intermediate File Manager
F12 Source Code Generation Manager
Insert Copy the current workspace actuator if any
Delete Delete the current workspace actuator if any
Backspace Delete the current workspace actuator if any
Ctrl Fine control of actuator value
Esc Exit NPS Panel Designer

Table II NPSPD Keyboard Functions

Main Menu Selections: Sub-menu Selections:

Layout Tools...
Auto Align On/Off
Layout Grid On/Off
Set Grid Size

Workspace Tools...
Create new Workspace
Clear Current Workspace
Delete Current Workspace

Panel Editor
Actuator Editor
Color Editor
File Manager
Code Generation
Quit

Table III NPSPD Menu Selections

94

Workspace Status Display

The lower quarter of the palette, as illustrated in Figure A.2, presents workspace status
information concerning the NPS Panel Designer environment.

File: The File field identifies the current workspace by the title associated with it. This
is especially useful when multiple workspace panels are in development.

Panel Width and Height: The Panel Width and Height fields present the width and
height of the current panel in screen relative units (pixels).

Align: The Align field presents the status ('ON' or 'OFF') of Auto- alignment for the
current workspace.

Grid Size: The Grid Size field presents the grid interval spacing in panel relative units.
Mouse X and Y: The Mouse X and Y fields present the X and Y coordinates of the

mouse cursor in panel relative units. The reference point (0,0) is the origin of the current
panel, the lower left comer.

Actuator X and Y: The Actuator X and Y fields present the X and Y coordinates of the
origin of the current actuator in panel relative units. The origin of each actuator is its lower
left corner and the reference point for this position is the host panel origin. These fields are
useful to position actuators in the same location on separate workspaces or to line up
actuators along a common axis within a workspace.

Actuator W and H: The Actuator W and H fields present the width and height of the
current actuator in panel relative units.

Tools

The NPSPD provides the user several tools to aid in customizing interface designs.
They are broken down into Workspace Tools, Actuator Tools, Environment Tools and
Editing and Management Tools. Tools can be invoked by using the specified key or by
using the pull down menu.

Workspace Tools

Create New Workspace (F5 key) enables the user to place and size a new workspace
panel. Clear Workspace (F6) clears (deletes) any actuators from the current workspace and
resets the environment tools to their default values. Delete Workspace (F7) deletes the
current workspace. The Clear Workspace and Delete Workspace operations prompt the
user to confirm the action before it is completed.

Actuator Tools

Copy Actuator (Insert key) copies the current actuator in the current workspace. The
copy is placed to the right of and above the original a distance equal to the original's width
and height, respectively. This tool is especially useful for producing copies of customized
actuators. It can also be used to add to a group of radio buttons. Delete Actuator (Delete
key) deletes the current actuator on the current workspace. Actuators may be moved and
resized on a workspace by placing the mouse-cursor on the actuator and holding the left-
mouse button down. Figure A.3 maps the selection areas associated with each actuator
body to the resulting NPSPD modification.

95

C B C

B A B

C B C

A - move the actuator.
B - resize by moving the selected side.
C - resize by moving the two selected sides.

Figure A.3 NPSPD Actuator Move/Resize Areas

Environment Tools

AutoAlign (F2) aligns the reference position of all actuators on the current workspace
to the current grid. When this tool is enabled, as indicated in the Workspace Status Display,
the reference point of actuators will be moved to the nearest grid intersection corresponding
to the current grid size. All subsequent actuators created, moved or resized on the
workspace will be aligned similarly. The default state is disabled. Grid Display (F3)
displays a grid in the current workspace to help in positioning actuators visually. The
default state is off. Grid Size (F4) enables the user to set the size of the grid in the current
workspace. The default grid size is 25 pixels. The Grid Size selected for each workspace
applies to both AutoAlign and Grid Display. AutoAlign and Grid Display are independent
of each other in each workspace, and the environment tools for each workspace are
independent of other workspaces.

Editing and Management Tools

The Panel Editor (F8 key) enables the user to interactively modify workspace panels.
Figure A.4 is an example of the Panel Manager window. The first typein across the top of
the window is used to attach a comment to the panel. This comment will be saved in the
intermediate file when the workspace is saved. The second typein is used to change the title
of the panel. Changes to this field will be reflected in the title bar of the workspace that is
being edited.

The next group of typeins on the left side of the window are used to set the location
and size of the panel. Changes to any of these parameters are immediately reflected in the
panel. Below the panel location inputs are four typeins that are used to modify the world
coordinates of the panel. These values only take effect if the panel is drawn in Screen

96

Figure A.4 Panel Editor

Relative mode. Across the bottom of the window are three typeins that enable the user to
set the panel's color table, scale factor and grid size.

On the right side of the window are nine sets of radio buttons. These buttons, which
can be either ON or OFF, are used to set various flags for the panel. Refer to the User's
Manual for a complete explanation of each flag and its meaning.

Finally in the bottom right comer of the window are two buttons. The Accept button is
used to make any changes to the panel's parameters permanent. The Cancel button is used
to undo any changes made to the panel in the current editing session and restore it to its
previous state. Pressing either of these buttons completes the panel editing session and
closes the window.

The Actuator Editor (F9 key) enables the user to interactively modify the basic
attributes of actuators. Figure A.5 is an example of the Actuator Manager window.

The first typein across the top of the window is the actuator comment field. Comments
entered in this typein will be saved in the actuator's permanent comment field in the
intermediate file when the actuator's host panel is saved. Below the comment typein is the
label typein. This field is used to specify the label for the actuator.

97

Figure AS Actuator Editor

Directly below the label typein are two buttons. The first is marked Label and it is used
to control the location of the label string. The second is marked Value and it controls the
location of the value output string. The position of these strings is determined by selecting
one of the 16 position buttons directly below these two buttons. The 13 relative position
buttons surrounding the box are defined as default positions. If a fixed position is desired,
either the Fixed button or the Fixed - Center button is selected. The fixed position is then
set by entering the appropriate x and y coordinates in either the Label Location typeins or
the Value Location typeins.

The actuator's position and size are set with the Actuator Location typeins. The initial,
minimum and maximum values associated with the actuator are set with the appropriate
typeins in the lower left side of the window.

The format of the value output string is set by entering the appropriate Unix format
string in the Value Format typein. The font factor for the label and value strings is set with
the Label and Value Font Factor typeins, respectively. Finally, the color table for the
actuator is set with the Color Table typein.

The Accept button in the lower right side of Figure A.5 is used to make any
modifications to the actuator permanent. The Cancel button is used to undo any changes

98

made to the actuator in the current editing session and restore it to its previous state.
Pressing either of these buttons completes the editing session and closes the window.

The Color Editor (FlO key) enables the user to interactively modify the color of panel
backgrounds and individual actuator parts. Figure A.6 is an example of the Color Manager
window. The NPSPD allows users to define up to eight custom color tables. Within each

Figure A.6 Color Editor

color table are 24 pre-defined panel and actuator colors. The first eight colors in the table
are the basic colors, such as black, white, red, etc. These colors can not be changed by the
user. The remaining 16 colors, defined as Panel Background, Actuator Body, etc. can be
modified using the Red, Green and Blue sliders. As these sliders are moved, the resulting
RGB color is displayed in the Color Box in the lower left corner of the window. The
corresponding color in the actuator or panel is also drawn, if applicable. When the desired
color is obtained, pressing the Store Current Color button will make the modification
permanent. This must be done for each modified color. Colors can be restored to their
default values at any time using the two Reset buttons as appropriate. The functionality of
the Accept and Cancel buttons is the same as the Actuator and Panel Managers.

The File Manager feature of the NPSPD enables the user to save and recall workspace
designs. NPSPD writes all of the pertinent information for a workspace to an ASCII file
called the intermediate file. This highly structured file enables the user to store and recall
uncompleted work, combine two or more separate designs, and modify designs manually

99

(outside of the NPSPD environment) by using any text-based editor. Figure A.7 is an
example of the File Manager window.

Figure A.7 File Manager

The desired operation (Open, Read or Save) is selected by pressing the appropriate
button. Save is the default operation. Open Workspace deletes the Current Workspace and
creates all of the panels listed in the named intermediate file. Read Workspace adds the
contents of the first panel in the intermediate -'e to the Current Workspace and creates any
subsequent panels listed in the file. Save Workspace saves the contents of the Current
Workspace, if Current is selected, or all workspaces to the file specified in the Filename
typein. Save/Recall Custom Colors specifies whether to save custom color information to
the intermediate file during Save operations, or read custom color information during Open
and Read operations. The Current Workspace is specified using the Current Workspace
typein. The filename to open, read or save is specified using the Filename typein. Refer to
Appendix E for a sample intermediate file.

The Source Code Generation Manager (F12 key) enables the user to generate
compilable source code that corresponds to an interface design. Figure A.8 is an example
of the Code Manager windowThe Current Workspace typein contains the title of the
workspace that was current when the F12 key was pressed. Any valid workspace title can
be entered in this field. The default generation mode is for the current workspace only. This
can be changed by pressing the appropriate button (either Current or All). If Current is
selected, code will be generated for the workspace corresponding to the Current Workspace
field. If All is selected, code will be generated for all of the workspaces on the screen
regardless of the contents of the Current Workspace field. The name of the output files can
be any legal Unix file name, and does not have to be the same as one of the workspaces.

100

Figure A.8 Code Manager

The Information Manager displays to the user various messages during the NPSPD
session. It is opened by the system when an action by the user either causes an error or can
not be completed. It is closed by pressing the Continue button. Figure A.9 is an example of
the Information Manager window.

Figure A.9 Information Manager

The Help Manager (Fl key) is an extensive help facility. Figure A. 10 is an example of
the Help Manager window. The Help Manager contains a Fileview actuator which enables
the user to read the on-line manual. The manual is divided into sections as indicated by the
index on the first page of section one. The Help Manager panel may be moved to any
location on the screen and opened or closed as often as necessary. When the window is
closed its contents will be retained so that when it is next opened, the same page will be
displayed. The desired set of manual pages is selected by pressing the appropriate button.

101

Figure A.1O Help Manager

The user can scroll through the text using either the up and down arrow buttons or the scroll
bar on the Fileview. The Help Manager window is closed by either pressing the Fl key or
the Close button.

Modifying Panels and Actuators

Most actuator and panel attributes can be modified to produce a custom interface.
Basic parameters, such as location, colors, label, etc., can be interactively changed using
the tools covered previously in this manual. Detail parameters for actuators must be
changed in either the intermediate file or in the generated source code. Refer to the
Reference Manual for detailed explanations of this procedure.

Source Code Generation and Application Linking

One of the most powerful features of the NPSPD is its ability to generate source code
that corresponds to an interface design. Using the Code Manager, the developer generates
source code for the current workspace or all workspaces. The code may then be modified
to communicate with the application using clearly defined entry points. The modified code
is compiled and linked with the application, providing a custom interface.

There are two methods of integrating ,-n interface designed wiulh the NPSqPUD into ati
application. The first method uses the framework of the code gelevt. V,,II. thl- NPSPD andi
integrates the target application's control i:eature using the entrvp'nv p,,i, , l~lidled h the
NPSPD. This technique is recormmended for users that are designing :,ipqpl ication from
the beginning.

The second method involves integrating an interface designed with the NPSPD) into an
existing application by discarding the bulk of the NPSPD code generated for the interface

102

and using only those functions necessary to initialize, control and draw it. This technique
integrates a graphical user interface into applications that either don't have one, or have one
that is considered inadequate.

Compilation

Figure A. 11 presents an example of the instructions required to compile the interface
source code produced by NPSPD. The Panel ToolBox library, npspanel.a, must be
available to the developer via an appropriate directory path as shown.

cc -o username UserPanel.c UserPanel_fn.c /nps-path/lib/npspanel.a

-l/nps-path/include -02 -align 16 -G 0 -lc-s -lgl-s -lfm -lIm

/nps-path is defined as the proper path to the NPS Panel ToolBox library.

/nps,.path = /n/gravy 1/work/zyda/npspanel in the current release.

The resulting file 'username' may be executed.

Figure A.11 NPSPD Source Code Compilation

103

APPENDIX B

NPS PANEL DESIGNER AND TOOLBOX
REFERENCE MANUAL

Introduction

This manual is the reference manual for the data structures and functions of the NPS
Panel Designer ToolBox.

Reference Manual Organization

Following this introduction, we provide five sections. The General ToolBox Usage
section describes the essential information necessary to integrate the Panel ToolBox into an
application. The Panel and Abstract Data-type Definition section describes completely the
structure and purpose of the foundational data-types used in the ToolBox. The Actuator
Detail Specifications section describes each actuator provided by the ToolBox and the
specific access and processing functions related to the actuator. The ToolBox Function
Specifications section describes the general access, processing and control functions
provided by the ToolBox. Finally, the ToolBox Constants, Global Variables and Support
Structures section summarizes the constants, global interface support variables and
auxiliary structures provided by the ToolBox.

104

General ToolBox Usage

The NPSPD ToolBox provides a library of panel and actuator structures with the
access and control functions necessary to implement graphical user interfaces. The current
C implementation provides no object oriented method of isolating the support data
structures from the main program, but it is recommended that the provided access functions
be used rather than direct reference to the structures themselves. Both high level and low
level creation and management functions are provided for all of the actuators in the
ToolBox.

The ToolBox is designed so that default settings for the panels and actuators are
sufficient to build a basic interface. Modifications tailor the interface to the needs of the
application. Figure B. I presents an example of the creation and modification of a panel with
a single Dial actuator.

Panel *p; /* Temporary panel pointer
Actuator *a; /* Temporary actuator pointer */

p = create.panel 0;
set-panel-location(p, 20, 56);
set-panel-size(p, 720, 534);
set_attfibute(p, visible, TRUE);
set_attribute(p, fixed, FALSE);
setpanel-tile(p, "UserPanel");
setattribute(p, colorjtable, 1);
appendpanel(p, Panel_List);

a = createactuator(dial);
set actuatorJocation(a, 77.5, 119.5);
setactuator -size(a, 75, 75, 2);
setactuator label(a, BOTTOM, 10, "Object Rotation Contrcl");
setattribute(a, activefunc, rotate-object);
set detail(Dial, a, major -tics, 4);
set detail(Dial, a, minortics, 1);
setdetail(Dial, a, winds, 1);
set-detail(Dial, a, finefactor, 0.1);
insertactuator(a, p);

Figure B.1 Creation and Modification Example

ToolBox data structure types and functions listed in the Panel and Abstract Data-type
Definition section are available to the programmer within the main routine. Several global
variables are made available for management of a panel based system.

105

A. Initialization Procedures

The Panel ToolBox requires several initialization steps to ensure proper operation.
InitializeTootlox() sets up the ToolBox environment, initializing global state variables,
panel management linked lists, the event queue, keyboard buffers, color tables, and fonts.
Panel and actuator creations and modifications follow. There is no initialization constraint
on either panels or actuators except that the host panel for each actuator must exist before
that actuator may be added. Figure B.2 presents the initialization code generated by
NPSPD.

void initializemaino /* initialize panel environment */
{

initialize_ToolBoxO; 1* initialize NPS Panel ToolBox */

initializepanelso; /* Initialize the control panels */

initializeactuatorso; /* create the actuators */

initialize.colorso; /* initialize user defined colors */

* initialize all other aspects of main program. */

userinitqueueo; iualize event graphics queue */
userimit menu0; /* initialize PanelDesigner menus */
userinit.cursoro; /* initialize special cursors */
user_initoverlayO; /* initialize overlay planes & color */

------ User define initializations are called via user.nit_main. */

userjini main0; / user defined main initializations
}

Figure B.2 NPSPD Initialization Sequence

B. Creation Procedures

The Panel ToolBox provides two functions for creation of default panels and default
actuators. Create_panel(), which requires no arguments, allocates and initializes a panel
data structure. Createactuator(, requires an iniialization function as its single argument
and allocates an actuator basic data structure and unique detail structure as required by the
initialization function. Both create functions return a pointer to the new object. Table I
presents a list of the initialization functions that may be used as an argument for
createactuatorO.

C. Insertion Procedures

Once a panel is created, it must be inserted into PanelList, the linked list of panels
maintained by the ToolBox. Insertjpanel() places the new panel at the head of the list.
Append~panel() places the new panel at the tail of the list. The oiier of Panel-List

106

basic dirview scroll
box fileview slider
bufferact frame vbarslider
button listact vstrip-slider
simple-button listview hbar_slider
toggle-button menu hstrip-slider
radiobutton arcmeter slideroid
arrowbutton filledarcmeter stripchart
dou.,le_arrowbutton dialmeter dual-stripchart
labelbutton filleddialmeter hstripchart
cycle vbarmeter vstripchart
dial vstrip-meter title
square_dial hbar_meter typein
rounddial hstrip-meter typeout

Table I ToolBox Actuator Initialization Functions

determines the order of panel processing and display. The linked list is traversed from head
to tail.

Likewise after an actuator is created, it must be attached to a panel or in some cases to
a parent actuator. InsertactuatorO and append actuatorO add the new actuator to a
panel's actuator list, at the head and tail respectively. Add subactuatorO inserts a
specified actuator into another actuator's sub-actuator list (sa). Sub-actuators are used by
several compound actuators including the Dirview, Fileview and Frame.

D. Mudification Procedures

The Panel ToolBox provides a broad compliment of functions for modifying the
attributes and details of panels and actuators. The designer directly controls the appearance
and function of an interface by way of these modification functions. Modifications may be
made both before and after the panel or actuator is added to the interface.
Set.panellocationO and setrpanel-sizeO position and size a panel.
SetactuatorlocationO and set actuator sizeO position and size an actuator.
Set minvalueO and set.maxvalueo set limits on the value mnge for an ,1ctuator. The
NPSPD Reference Manual lists and discusses all of the ToolBox functions, their arguments
and their use. Two other general modification functions, set_attributeO and setdetail(),
are discussed below.

1. Set attributeO

Each of the attributes maintained in a panel or an actuator base structure may be
modified using the setattributeO function. As depicted in Figure B.1, the arguments for
the function call are the panel or actuator pointer, the attribute field name (e.g., visible and
activefunc), and the value to be assigned to that attribute. Although some attributes are
normally accessed and set by specialized functions such as setactuator size(, they may
also be set using the setattributeO function. An exception applies to the string attributes,

107

title, label and valueJmt. These attributes must be set using the specialized functions

provided by the ToolBox, setfianeltitleO, set-actuator-labelO and setvalue Jormato.

2. Setdetail(

Setdetail() provides the means to modify actuator detail parameters. The function call
requires four arguments: the actuator detail data-type, the actuator pointer, the detail field
name (e.g., major tics and minor-tics), and the value to be assigned to that detail field. A
specialized string function, setdetail stringo, provides the means to set an actuator detail
string field (e.g.,the Typein buf field).

3. Binding Modifications

Modifications made to panels and actuators may affect several other aspects of the
object. Fix_panel() andfixactuatorO ensure that all inter-related aspects of the object are
adjusted after modifications are completed. Fix functions are specific to each panel and
actuator, and they are automatically executed by the ToolBox when any of the insertion
functions are called. Normally modifications are made immediately following creation and
prior to insertion, thus binding is automatically ensured by the ToolBox. However,
modifications may be needed at other points in an application program, possibly in
response to user actions. After changes to the attributes of a panel, fix.panel() should be
explicitly called, and after changes to the attributes or details of an actuator,flx_actuatorO
should be called.

E. Processing Cycle

A graphics application is normally structured with a main program loop that repeatedly
calls several functions. These functions typically include input processing, followed Sy
interface display update, followed by applications calculations and display update. Figure
B.3 presents the main function and processing support functions generated by NPSPD and
supported by the Panel ToolBox.

Control of the interface consists of processing the mouse, keyboard and other device
inputs in process programqueueO and processing the interface panels and actuators
based on those inputs in processpanels(. The ToolBox manages the necessary state
variables for mouse position, button action and keyboard action. ResetToolBox_QO and
processToolBox_QO manage the event queue with respect to the interface. Event tokens
are also passed to the application program via userprocess._queueo. Process_panelsO
manages the selected panel and selected actuator ensuring that actuator state and value
reflect the user mouse and keyboard inputs.

F. Processing Techniques

The Panel ToolBox supports optional, developer defined action functions that are
executed during user activation of a panel and/or actuator. Panels and actuators have three
pointers that may be set to reference the developer defined functions. These three attributes
are downfunc, activefunc and upfunc. If they are assigned application functions, downfunc
executes once when the left-mouse button transitions down, upfunc executes once when the
left-mouse button transitions up, and activefunc executes each time process_panelsO is

108

mainO

initializemainO; /* initialize main program */

forever { /* Panel main loop *1

controlprogram(PanelList); /* process controls and queue */
drawcontrol panels(PanelList); /* draw user control panels & acts */
user displayo; /* handle to call user functions */

void control-program f* Control program operation -1(
PanelList *panel-list /* specified panel list */)

processprogramqueue0; fP Process the graphics event queue */
processpanels(panel-list); /* Control panels based on user input */

void processprogram-queue 0 /* Process graphics event queue */

short TOKdevice, /* Graphics event queue device token */TOKvalue; 1 Graphics event queue token value */

reseLToolBoxQo; 1 Prepare ToolBox for input process */

while (qtesto) { J* Process all tokens available *1
TOKdevice = qread(&TOKvalue);

/* Standard ToolBox input processing */
processToolBoxQ(PanelList, TOKdevice, TOKvalue);

switch(TOKdevice) { /* User Program specific Q processing */

case RIGHTMOUSE: /* Right Mouse Controls Menus */
if (TOKvalue - DOWN) /* on TransitionDown process menu */
user.processmenu0; /* User defined menu processor */
break;

)/* end switch */

/ ----- User defined queue function receives all TOKENs processed. */

userprocess-queue(TOKdevice, TOKvalue);

j) * end while qtesto */

Figure B.3 NPSPD Processing Functions

109

called in the application main loop. These function references provide a powerful control
link for the interface developer.

The state of each panel and the state and value of each actuator is available to the
application program. State testing functions including isactiveo, isvisible(),
isselectableO and test_flagO return a Boolean result. State flags may be altered under
application control using the setattributeO function or the more specific set_flagO and
clear flagO functions. SetvalueO and get valueO modify and access an actuator's value.

Special effects may be produced by selectively controlling a panel's or actuator's state,
particularly the visible and selectable flags. Set panelinvisibleO and setpanel-visibleO
provide the means to build an effective multi-panel interface.

G. Display Considerations

The Panel ToolBox manages the display of all interface panels and actuators. Drawing
occurs only when a change of state or value necessitates an update of the appearance.
Actuators are drawn in the reverse order of the host panel's actuator linked list. Thus if two
actuators overlap, the one inserted closest to the head of the panel's list is drawn on top.

The ToolBox provides eight modifiable color tables to support multi-color interface
designs. Each panel and actuator references one of the color tables as specified by the
color-table attribute. Changing the colortable index or directly modifying the color tables
using define colortableO under application control can produce useful effects in the
interface.

H. Efficiency Considerations

The Panel ToolBox optimizes processing and drawing algorithms so as not to degrade
real-time applications. Panels and actuators each have their own set of specific variables
that allow them to be customized for a particular use. For example, panels can be designed
so that they are only visible when they are needed, saving screen space and CPU cycles.
Similarly actuators can be designed so that they are not selectable, effectively making them
output devices (e.g., a Dial, which is normally an input device, can be configured to display
the output of a function or operation).

A panel is re-drawn completely only when required by a move or re-size action. During
other processing and drawing cases, only those actuators which have been altered and those
which have been specifically designated for redraw are drawn. The ToolBox determines
visibility and need for redraw at high levels within its hierarchical program flow and
prevents excess low level processing when it is not required. The ToolBox processes only
the selected panel, if any. While processing panels, the selected actuator on each panel, if
any, and the actuators requiring automatic processing are processed.

110

Panel and Actuator Abstract Data-type Definition

Panel Abstract Data-Type Definition

The NPS Panel ToolBox provides two foundational abstract data types, Panel and
Actuator. This section specifies the attributes of a Panel object.

typedef struct paneltype {

long id; /* Unique panel identifier
long gid; /* MEX window identifier for panel */
long redrawcnt; /* Count of required redraws */
long actredraw; /* True if any actuator needs redraw
char *comment; /* Description of panel */

Boolean visible; /* Panel visible? */
Boolean selectable; /* Panel selectable?
Boolean popable; /* Panel popable when moused? */
Boolean active; /* Panel active or not?
Boolean fixed; /* Panel fixed or variable size? */
Boolean border, /* Include border?
Boolean screenrelative; /* World coords are screen relative?
Booiean zbuffer, /* Z-buffer is on?
Boolean autoalign; /* Auto alignment to grid?
Boolean griddraw; /* Panel grid displayed?

long x, y, w, h; /* Origin of panel, width and height
Coord wl, wr, wb, wt, wn, wf; /* World coordinate system */
Object vobj; /* Object holding world coord trans
float ppu; /* Pixels per unit of world distance */
float scale_factor, /* Scale factor for all actuators */
Coord gridsize; /* Grid size for this panel

char title[MAX_STRLEN+ I]; /* Panel title
Link_list *keyboardbuffer, /* Pointer to panel's keyboard buffer */
long color..table; /* Index of color table for panel */

/* Function reference pointers */
void (*initfunc)(struct paneltype*);
void (*delfunc)(struct paneltype*, struct paneljlisttype*);
void (*fixfunc)(struct panel_type*);
void (*downfunc)O;

1ll

void (*activefunc)0;
void (*upfunc)0;
void (*drawfunc)(struct panel_type*);
void (*bkgndfunc)(struct paneltype*);
void (*dumpfunc)(struct panel-type*);

struct actuator-type
al-head, / Actuator list head */
altail, / Actuator list tail *
ca; / Current actuator for panel *1

struct list-node-type
al auto; / List of acts with auto processing */

struct panel-type
prior, / Pointer to prior panel */
next; / Pointer to next panel */

} Panel;

112

Actuator Abstract Data-Type Definition

typedef struct actuator-type

long id; /* Unique actuator identifier
long group-id; /* Group identifier number
long type; /* Actuator type */

long redraw_cnt; /* Count of required redraws */
Device key; /* keyboard equivalent if any */
char *comment; /* Description of actuator */

Boolean active; /* Actuator active or not? */
Boolean visible; /* Actuator displayed or not? */
Boolean selectable; /* Actuator selectable or not? */

Coord x, y, w, h; /* Location, size in world coords */
float bw; /* Bevel width in world coords */
float scalefactor, /* Scale factor for sub-actuators */
long color_table; /* Index of color table for actuator */

char label[MAX_STRLEN+I]; /* Actuator label */
float labelfontfactor /* Scale factor for label font */
Coord Ix, ly, 1w, lh, lbx, lby; /* Label loc, width, height & border
long llocation; /* Relative location for label disp. */

float val, initval; * Current value and reset value
float minval, maxval; /* Minimum and maximum value for act */
char value_fmt[MAX_FMTLEN+I] /* Format string for value display /
float value font factor; /* Scale factor for value font */
Coord vx, vy, vw, vh, vbx, vby; /* Value loc, width, height & border */
long vjlocation; /* Relative location for value disp. */

/* Function reference pointers */
void (*initfunc)(struct actuator_type*);
void (*addfunc)(struct actuator-type*,struct panel-type*);
void (*addsubfunc)(struct actuator_type*,struct actuator_type*);
void (*delfunc)(struct actuator-type*);
void (*fixfunc)(struct actuator-type*);
Boolean (*pickfunc)(struct actuator~jype*,Coord,Coord);
void (*newvalfunc)(struct actuator-type*,Coord,Coord);
void (*processfunc)(struct actuatortype*);
void (*downfunc)(struct actuatortype*);
void (*activefunc)(struct actuatortype*);
void (*upfunc)(struct actuator-type*);
void (*drawfunc)(struct actuatorjype*);
void (*dumpfunc)(struct actuator_type*);

113

Void *detail; /* Pointer to actuator detail data

long detailsize; /* Size of actuator detail struct. */

Void *userdata; /* Pointer to User specific data. */

Panel *panel; /* Pointer to host panel */

struct actuator-type
pa, / Pointer to host (parent) actuator */
prior, / Pointer to prior act of host list */
next, / Pointer to next actuator of panel
ga, / Pointer to group-actuator ring */
sa, / Pointer to sub-actuator list */
ca; / Pointer to current sub-actuator */

Actuator,

114

Panel and Actuator Attribute Field Definitions:

For each attribute field name, the following information is provided:
field name followed by attribute data type (in braces),
abstract data type to which the attribute field belongs,
attribute definition and use, and
additional references.

act-redraw {long)

Panel field:
Actredraw records whether or not any of the Panel's Actuators needs to be
redrawn to bring the display up to date in both the front and back buffers. It is set
at the same time an Actuator's redraw_cnt is set by setredrawo. It is cleared
when all of the Actuators are displayed correctly. This field permits the Panel
ToolBox to efficiently minimize overhead when no Actuator needs to be drawn.

see also:
redraw-cnt, set.redrawO.

active (Boolean)

Actuator field:
Active is TRUE when the Actuator is selected with the left mouse button or a key
equivalent and for as long as the left mouse button or key equivalent is down.
When the button is release, active is reset to FALSE. Newvalfunc uses this state
variable to properly determine Actuator value or to reset it to its non-selected
appearance.

Panel field:
Active is TRUE when the left mouse button is pressed while inside the boundary
of the Panel. An Actuator need not be selected.

see also:
key-equivalent, newvalfunc.

activefunc (function pointer)

Actuator field:
Activefunc is one of three Actuator action function pointers. If defined by the
User, activefunc is called once each main processing cycle as long as the selected
Actuator is active. It is supplied with a pointer to the selected Actuator when it is
called.

Panel field:
Activefunc is one of three Panel action function pointers. If defined by the User,
activefunc is called once each main processing cycle as long as the selected Panel
is active. It is supplied with a pointer to the selected Panel when it is called.

see also:
downfunc, upfunc.

115

addfunc (function pointer)

Actuator field:
Addfunc is one of five Actuator modification function pointers. If defined for an
Actuator, addfunc is called to provide specialized initialization during the process
of adding the Actuator to a Panel.

see also:
addsubfunc, delfunc, fixfunc, initfunc, "Modification Functions".

addsubfunc (function pointer)

Actuator field:
Addsubfunc is one of five Actuator modification function pointers. If defined for
an Actuator, addsubfunc provides specialized initialization during the addition of
a sub-actuator to its parent. It is called by addsub_actuator() after basic
initialization of the sub-actuator.

see also:
addfunc, addsubactuatorO, delfunc, fixfunc, initfunc, "Modification
Functions".

al-auto (List-node*)

Panel field:
Alauto is the hed pointer of the list of Actuators that require automatic
processing dt.A,, ,ach cycle of process..panelso. An Actuator is added to alauto
by fixactr t ,. if the Actuator has a defined processfunc.

see also:
fix a uatorO, processfunc.

alhead (Actuator*)

Panel field:
Alhead is the head pointer of the doubly linked list of Actuators that belong to
the Panel. An Actuator is added to the head of the list by insertacuator() or to the
tail of the list by appendactuatoro.

see also:
al-tail, append-actuatoro, insertactuatoro, next, prior.

alitail (Actuator*)

Panel field:
Al-tail is the tail pointer of the doubly linked list of Actuators that belong to the
Panel. An Actuator is added to the head of the list by insert actuator0 or to the tail
of the list by appendactuatoro.

see also:
alhead, append actuatoro, insert-actuatoro, next, prior.

116

autoalign (Boolean)
Panel field:

Autoalign is a special Panel field used by the Panel Designer to control auto
alignment of Actuators to the specified grid interval for that Panel. Autoalign is
TRUE when Actuators are to be aligned to the Panel Designer grid.

see also:
griddraw, gridsize.

bkgndfunc (function pointer)

Panel field:
Bkgndfunc is one of two Panel display function pointers. If defined for a Panel,
bkgndfunc provides a User designed background for the Panel. It is called by
drawpanelO after the background is cleared when the Panel has been marked for
redraw.

see also:
drawfunc.

border (Boolean)

Panel field:
Border controls whether the Panel is created with or without an IRIS window
manager border. Default setting is TRUE.

bw (Coord)

Actuator field:
Bw is the Actuator bevel width in Panel coordinates. Positive bw will cause the
Actuator to appear raised, negative bw will cause it to appear recessed, and zero
bw will produce no bevel. The displayed and pickable dimensions of the Actuator
are increased by the absolute value of bw.

see also:
pickfunc, PICKACTO, h, x, y, w.

ca J Actuator*)

Actuator field:
Ca is a reference pointer to an Actuator's current Actuator. Maintenance and use
of the ca field is the responsibility of each Actuator. It usually provides a reference
to the sub-actuator being operated with the mouse.

Panel field:
Ca is a reference pointer to a Panel's current Actuator. It provides a reference to
the Actuator being operated with the mouse.

117

colortable (long)

Actuator field:
Colortable indicates which of the global color tables is to be used to draw the
Actuator. The default color table is 0.

Panel field:
Color-table indicates which of the global color tables is to be used to draw the
Panel. The default color table is 0.

see also:
setactuatorcolorO, setpanel_coloro.

comment (char*)

Aictuator field:
Comment is a special reference used by the Panel Designer to allow an optional,
User specified comment to be associated with each Actuator in the intermediate
file when it is saved.

Panel field:
Comment is a special reference used by the Panel Designer to allow an optional,
User specified comment to be associated with each Panel in the intermediate file
when it is saved.

delfunc (function pointer)

Actuator field:
Delfunc is one of five Actuator modification function pointers. If defined for an
Actuator, delfunc is called by deleteactuatorO to provide specialized data
structure deletion during the process of deleting the Actuator from a Panel. It is
called prior to deledon of the detail and basic data structures.

Panel field:
Delfunc is one of three Panel modification function pointers. If defined for a
Panel, delfunc is called by deletepanel() to provide specialized data structure
deletion during the process of deleting the Panel from a list of Panels. It is called
after deletion of all of the Actuators associated with the Panel.

see also:
addfunc, addsubfunc, fixfunc, initfunc, "Modification Functions",
deleteactuatoro, deletepanel().

detail (Void*)

Actuator field:
Detail provides a pointer to the Actuator's specific detail data structure. An
Actuator allocates memory and assigns values to the detail parameters during
execution of its initfunc. Each Actuator inherits all of the attributes of the base

118

class Actuator and adds specific details, if any. Values within the detail structure
may be referenced using the ACCESSO macro, the set-detail0 macro, or by
declaring an auxiliary detail pointer.

example:
(three methods to set the same detail parameter)

Actuator *a = create_actuator(button);
Button *ad = (Button*)a->detail;

ACCESS(Button, a, shape) = RECTANGLE;
set_detail(Button, a, shape, RECTANGLE);
ad->shape = RECTANGLE;

see also:
ACCESS(), detail-size, initfunc, set_detailO.

detail-size (long}

Actuator field:
Detail-size is the size in bytes of the Actuator-specific detail data structure. It is
set by initfunc and may be used to determine the amount of data to transfer when
copying an Actuator.

see also:
detail, initfunc.

downfunc (function pointer)

Actuator field:
Downfunc is one of three Actuator action function pointers. If defined by the User,
downfunc is called once when the left mouse button transitions down selecting the
Actuator. It is supplied with a pointer to the selected Actuator when it is called.

Panel field:
Downfunc is one of three Panel action function pointers. If defined by the User,
downfunc is called once when the left mouse button transitions down selecting the
Panel. It is supplied with a pointer to the selected Panel when it is called.

see also:
activefunc, upfunc.

drawfunc (function pointer)

Actuator field:
Drawfunc is a pointer to the Actuator's drawing routine which renders the
graphical representation of the Actuator in the IRIS bitplanes. It is initialized
during execution of initfunc and it is called by drawactuatoro.

Panel field:
Drawfunc is one of two Panel display function pointers. If defined for a Panel,
drawfunc provides a User designed drawing algorithm for the Panel. It is called

119

by draw-panel() if the Panel is visible and if redraw is required or an actuator has
changed appearance. If drawfunc is not defined, a default drawing algorithm is
used which calls the drawfuncs for each Actuator.

see also:
drawactuatoro drawpanel0, initfunc.

dumpfunc {function pointer)

Actuator field:
Dumpfunc is a pointer to an Actuator specific function that is called to dump the
values of the detail data structure. If defined, it is called in conjunction with the
generalize dump-actuator() function when saving all Actuator parameters to a
User specified file. [Note. None of the Actuator dumpfuncs have been defined in
this release.]

Panel field:
Dumpfunc is a pointer to a User defined, specialized function that is called to
dump the values of the user_data structure. If defined, it is called in conjunction
with the generalized dumppanel() function when saving all Panel parameters to
a User specified file.

fixed (Boolean)

Panel field:
Fixed controls whether or not the Panel is fixed (TRUE) or variable sized
(FALSE). Default setting is FALSE.

fixfunc (function pointer)

Actuator field:
Fixfunc is one of five Actuator modification function pointers. If defined for an
Actuator, fixfunc is called by fix-actuator0 to provide specialized correction to
the Actuator's size and appearance after changes have been made to any of its
parameters.

Panel field:
Fixfunc is one of three Panel modification function pointers. If defined for a Panel,
fixfunc is called by fix-panel() to provide specialized correction to the Panel after
changes have been made to any of its parameters or to Actuator locations or sizes.

see also:
addfunc, addsubfunc, delfunc, fix-actuatoro, fix_panelO, initfunc, "Modification
Functions".

ga (Actuator*)

Actuator field:
Ga is a pointer used to implement a ring of Actuators which are associated within
a group. Actuators are grouped to allow them to modify one another's value when
any of them are active. (e.g. Radio buttons use the group ring to unset any other
'on' button within the group when one is selected. An Actuator is added to a group

120

on a Panel based on its group-id by either addactuator.jogroup or
resetgroupso. It may be removed from its associated group using
removejfromgroupo.

see also:
addactuatortogroupo, group-id, removefrom.groupo, reset-groupso.

gid I long I
Panel field:

Gid is the IRIS window manager graphics id for the window within which the
Panel is drawn.

griddraw {Boolean)

Panel field:
Griddraw is a special Panel field used by the Panel Designer to control drawing of
the alignment grid in the background of the Panel. When Griddraw is TRUE the
alignment grid is drawn as part of the Panel background.

see also:
autoalign, gridsize.

gridsize {long)

Panel field:
Gridsize is a special Panel field used by the Panel Designer to control the size of
the alignment grid for the Panel. Gridsize may be set to any value. Panel Designer
provides gird size menu selections of 5, 10, 25, 50, 75 and 100 units.

see also:
autoalign, griddraw.

groupid (long)

Actuator field:
Groupid is used to associate Actuators on a Panel within a group ring. Actuators
are grouped to allow them to modify one another's value when any of them are
active. An Actuator is added to a group with matching group-ids by either
addactuatorto.group(or reset-groupso. It may be removed from its associated
group using removefrom.groupo.

see also:
add-actuatortogroupo, ga, remove_from_.group(, resetgroupso.

121

h (Coord in Actuator, long in Panel field)

Actuator field:
H is the height of the Actuator in Panel relative coordinates. Bevel width (bw) is
outside of height. H may be changed at any time to alter the displayed height of
the Actuator. Fixactuatoro should be called after such a change.

Panel field:
H is the height of the Panel in screen relative units (pixels). H does not include
pixels used to draw the IRIS window manager border if one is included. H may be
changed at any time to alter the displayed height of the Panel. Fix-panel() should
be called after such a change.

see also:
x, y, w, bw, fix-actuatoro, fix-panel().

id {long}
Actuator field:

Id is a unique identification number provided by the Panel ToolBox to each
Actuator at the time of its creation. Default id's are negative so that the User may
a use different meaningful constants if desired.

Panel field:
Id is a unique identification number provided by the Panel ToolBox to each Panel
at the time of its creation. Default id's are negative so that the User may a use
different meaningful constants if desired.

see also:
create-actuatoro, create-panel().

initfunc (function pointer)

Actuator field:
Initfunc is one of five Actuator modification function pointers. It is called by
create-actuator() to provide initialization specific to each type of Actuator.
Initfunc is passed to createactuator) as a parameter to facilitate easy addition of
new types of Actuators to the Panel ToolBox.

Panel field:
Initfunc is one of three Panel modification function pointers. If defined, it is called
by fix-panel() to provide User designed initialization related to that Panel.

see also:
addfunc, addsubfunc, createactuatorO, delfunc, fix-panel0, fixfunc,
"Modification Functions".

122

initval {float)

Actuator field:
Inirval provides an optional, User specified initial value for each Actuator. It is
used by Actuator fixfuncs to reset the val field. Default value, which depends on
the particular Actuator, is usually the minval.

see also:
fixfunc, minval, maxval, val.

key J long)

Actuator field:
Key is an optional, User specified identifier for a device to be used as an Actuator
key equivalent. If key is defined, Insertactuator0 and append-actuator() queue
the appropriate device. Pressing the key is the same as mouse activation with the
left mouse button.

see also appendactuatoro, insert_actuatorO.

keyboardbuffer (KeyList pointer)

Panel field:
Keyboardbuffer is a reference pointer to an optional linked-list character buffer
used by the Panel to accept input from the keyboard. If initialized by
initialize.keyboard-buffer() and activated by activateikeyboardo,
keyboardbuffer will receive all character input from the keyboard that is not
explicitly directed by cursor position into an active Typein Actuator. The
character input may be processed by test_list0 and next-charo.

see also:
activate.keyboardo, deactivate.keyboardo, initializeikeyboardbuffero,
nextcharO, testlisto, Typein.

Ilocation (long)
(Actuator field) Ljocation is a constant which indicates the relative position of the

Actuator's label field as depicted in Figure A.1. If Ilocation is positive, the label
is displayed with a background box and if I-location is negative, the label is
displayed without a background box. Zero in Ilocation prevents label display.
L_location may take on any of the following values:

LABELOFF 0

BOTTOMLEFT 1 NB_BOTTOM_LEFT -1
BOTTOM 2 NB_BOTFOM -2
BOTTOMRIGHT 3 NBBOITOMRIGHT -3
RIGHTLOWER 4 NBRIGHT_LOWER -4
RIGHT 5 NB_RIGHT -5
RIGHTUPPER 6 NB_RIGHT_UPPER -6
TOPRIGHT 7 NB_TOP._RIGHT -7
TOP 8 NBTOP -8

123

TOPLEFT 9 NBTOPLEFT -9
LEFTUPPER 10 NBLEFTUPPER -10
LEFT 11 NB LEFT -11
LEFTLOWER 12 NB LEFTLOWER -12
CENTER 13 NBCENTER -13
FIXED 14 NB_FIXED -14
FIXEDCENTER 15 NB_FIXEDCENTER -15

Figure B.A Label Locations

FIXED and NBFIXED are special constants that allow the User to explicitly
specify label position using Ix, ly, 1w, lh, lbx, and lby. The ToolBox will only
adjust 1w and lh so that the background box will fully include the label.
FIXEDCENTER and NBFIXEDCENTER are similar to FIXED with the
added property that the text of the label will be centered within the User specified
label area.

see also:
computelabellocationo, computeJocationO, setactuator_label0,
setlabellocationO, setjlabel-sizeo, lx, ly, 1w, lh, lbx, lby.

label (string)

Actuator field:
Label is an optional, User specified string which appears near the Actuator in a
location specified by llocation.

see also:
Ilocation, set-actuator_label0, set_labellocationo, setlabel_sizeo, Ix, ly, 1w,
lh, lbx, lby.

label font factor (float)
Actuator field:

Label fontfactor specifies the scaling factor which is applied to the Actuator's
label font. The scaling is approximately equal to an equivalent point size (e.g.

124

labelfontfactor = 12.0 approximates display of label text in a 12 point font). Any
non-negative font_factor is allowed, although reasonably usable fontfactors
range from 8.0 to 120.0.

lbx (Coord)

Actuator field:
Lbx is the x direction border offset in Panel relative coordinates of the Actuator's
label (i.e. the space between the label background box boundary and the text of
the label). It is recalculated after changes by fixactuatorO.

see also:
Ix, ly, lw, lh, lby, fix-actuatoro.

Iby {Coord)

Actuator field:
Lby is the y direction border offset in Panel relative coordinates of the Actuator's
label (i.e. the space between the label background box boundary and the text of
the label). It is recalculated after changes by fix_actuatoro.

see also:
Ix, ly, lw, lh, lbx, fix-actuatoro.

Ih (Coord)

Actuator field:
Lh is the height in Panel relative coordinates of the Actuator's label, including the
background box. It is recalculated after changes by fix.actuatoro.

see also:
Ix, ly, 1w, lbx, lby, fixactuatoro.

1w I Coord)

Actuator field:
Lw is the width in Panel relative coordinates of the Actuator's label, including the
background box. It is recalculated after changes by fix-actuatoro.

see also:
Ix, ly, lh, lbx, Iby, fixactuatoro.

Ix (Coord)

Actuator field:
Lx is the x location in Panel relative coordinates of the Actuator's label. The label
is positioned relative to the Actuator's origin (lower left corner).Lx is recalculated
after changes by fixactuatorO.

see also:
ly. lw, lh, lbx, lby, fixactuatoro.

125

ly (Coord}
Actuator field:

Ly is the y location in Panel relative coordinates of the Actuator's label. The label
is positioned relative to the Actuator's origin (lower left corner). Ly is recalculated
after changes by fixactuatorO.

see also:
Ix, lw, lh, lbx, lby, fix.actuatoro.

maxval (float)

Actuator field:
Maxval is the maximum value that an Actuator may take in its val field. For
continuous Actuators, such as Dials or Sliders, maxval is the upper limit on the
value of the Actuator. For discrete Actuators, such as Buttons, val is set to maxval
when the Actuator is selected or 'ON'.

minval (float)

Actuator field:
Minval is the minimum value that an Actuator may take in its val field. For
continuous Actuators, such as Dials or Sliders, minval is the lower limit on the
value of the Actuator. For discrete Actuators, such as Buttons, val is set to minval
when the Actuator is not selected or 'OFF'.

newvalfunc (function pointer)

Actuator field:
Newvalfunc is one of three Actuator control function pointers. If defined,
newvalfunc is called within process-actuator0 when an Actuator is first selected
with the mouse or key-equivalent, and it is repeated called each processing cycle
as long as the Actuator is selected. Newvalfunc computes the Actuator's state and
value based on cursor position relative to Panel or Parent-Actuator's origin. When
the mouse button or key-equivalent is released, newvalfunc is called a last time to
return the Actuator to its in-active state and value.

see also:
pickfunc, processfunc, process-actuatoro, val.

next (Actuator* in Actuator, Panel* in Panel field)

Actuator field:
Next provides the forward link in a Panel's list of Actuators (alhead) or a Parent-
Actuator's list of Sub-Actuators (sa). When an Actuator is added to or removed

126

from a Panel or Parent-Actuator, next is appropriately managed by
insertactuatorO, append-actuatoro, add_subactuatorO, extract-actuatoro, and
delete-actuatorO.

Panel field:
Next provides the forward link in a list of Panels (e.g. PanelList which is
managed by the Panel ToolBox). A Panel is added to a specified list by
insert_panel() or append-panel() and removed by deletepanel0.

see also:
alhead, al-tail, Panel_List, prior, sa, append-actuatoro, insertactuatorO,
add_subactuatoro, extractactuatoro, delete_actuatoro, append-panel(),
insert_panel(), delete.panel0.

pa { Actuator*)

Actuator field:
Pa provides a reference to the Parent-Actuator of each Sub- Actuator. Pa is NULL
is the Actuator is not a Sub-Actuator. Pa is managed by addsubactuatoro.

see also:
addsub-actuatorO.

panel (Panel*)
Actuator field:

The panel field provides a reference to the host Panel for each Actuator. Sub-
Actuators reference the same host Panel as their Parent- Actuator.

see also:
appendactuatorO, insertactuatoro.

pickfunc (function pointer)

Actuator field:
Pickfunc is an optional one of three Actuator control function pointers. If defined,
pickfunc provides the algorithm for determining if the Actuator is selected by the
cursor position and left mouse button. If not defined, an efficient default algorithm
is used which compares cursor location to Actuator boundary. If the pick
algorithm returns TRUE then the Actuator becomes the Selected_Actuator.

see also:
newvalfunc, processfunc, SelectedActuator

popable (Boolean)
Panel field:

Popable controls whether or not the Panel is "popped" by the Panel ToolBox when
it is selected using the cursor and left mouse button. Default setting is FALSE.

127

ppu (float)

Panel field:
Ppu is the number of pixels per unit dimension in the Panel relative coordinate
system. It is used to normalize pixel oriented dimensions (e.g. string widths) in
terms of Panel relative coordinates. Ppu is calculated by fix-panel().

see also:
fix-panel()

prior (Actuator* in Actuator, Panel* in Panel field)

Actuator field:
Prior provides the reverse link in a Panel's list of Actuators (al_tail or a Parent-
Actuator's list of Sub-Actuators (sa). When an Actuator is added to or removed
from a Panel or Parent-Actuator, prior is appropriately managed by
insert-actuatoro, appendactuatoro, addsub-actuator), extract actuatoro, and
delete-actuatorO.

Panel field:
Prior provides the reverse link in a list of Panels (e.g. Panel_List which is managed
by the Panel ToolBox). A Panel is added to a specified list by insert-panel() or
append-panel() and removed by delete-panelO.

see also:
alhead, al-tail, Panel_List, next, sa, append-actuatoro, insert_actuatorO,
addsub_actuatorO, extractactuatoro, delete_actuatorO, append-panel(),
insertpanelO, deletepanel().

redraw.cnt I long)

Actuator field:
Redraw_cnt records the number of times an Actuator must be drawn to bring the
display up to date. When an Actuator changes its state or value, redrawcnt is set
to two (2) indicating that both the front and back buffers are incorrect with respect
to the Actuator. Redraw_cnt is set using set-redrawo, usually during execution of
the Actuator's newvalfunc or processfunc. Setredraw0 also sets the actredraw
field for the host Panel to indicate that at least one Actuator on the Panel must be
redrawn. Drawing functions will draw the Actuator only if redraw_cnt is greater
than zero, and as the Actuator is drawn in each buffer, redraw_cnt is decremented.
Compound Actuators properly set the redraw cnt for their Sub-Actuators to
ensure complete drawing. User code may force a redrawing of any Actuator by
using set_redrawo.

Panel field:
Redraw_cnt records the number of times a Panel must be redrawn to bring the
display up to date after being reshaped or moved or when the background has been
disturbed. Redraw cnt is set to two (2) indicating that both the front and back
buffers are incorrect with respect to the Panel and its background. As the Panel is

128

completely redrawn, redraw_cnt is decremented. If a Panel's redraw-cnt is greater
than zero, every Actuator on the Panel is also redrawn. User code may force a
redrawing of a Panel by using setredrawo.

see also:
actredraw, drawfunc, newvalfunc, processfunc, setjredrawo.

sa (Actuator*)

Actuator field:
Sa is a reference pointer to an Actuator's optional list of Sub-Actuators. Sub-
Actuators are added to the head of an Actuator's sa list by addsubactuator0 and
are linked through their prior and next fields.

see also:
prior, next, addsubfunc, addsubactuator()

scale factor (float)

Actuator field:
Scalefactor is a scaling factor which is applied to all Sub- Actuators of an
Actuator when drawn. The default scalefactor is 1.0.

Panel field:
Scalefactor is a scaling factor which is applied to all Actuators of a Panel when
drawn. The default scalefactor is 1.0.

screen relative (Boolean)

Panel field:
Screen_relative controls whether or not the Panel is created with a coordinate
system that is screen relative. If screenrelative is TRUE, wl, wb, wn and wf equal
0.0, wr equals w and wt equals h for the Panel. If screen_relative is FALSE, then
the Panel coordinate system must be defined by the User. Screenrelative may be
changed during execution as long as fix.panel() is called after the change. Default
setting is TRUE.

see also:
wl, wr, wb, wt, wn, wf, fix-panel()

selectable (Boolean)

Actuator field:
Selectable controls whether or not the Actuator may be selected and controlled
using the mouse cursor and left button. Setting selectable FALSE causes the
Actuator to be drawn with a striped overlay. Default setting is TRUE.

Panel field:
Selectable controls whether or not the Panel and its Actuators may be selected and
controlled using the mouse cursor and left button. Setting selectable FALSE
causes the Panel to be drawn with a striped overlay. Default setting is TRUE.

129

title (string)

Panel field:
Title is an optional character string which appears in the title bar of the Panel's
window if border is set TRUE.

see also:
border

type (long)

Actuator field:
Type indicates what the Actuator is. Type is set by each Actuator's initfunc to one
of the following constant values:

BASIC 5
BOX 10
BUFFERACT 60
BUT7ION 20
CYCLE 30
DIAL 40
DIRVIEW 50
FILEVIEW 70
FRAME 80
LISTACT 90
LISTVIEW 190
MENU 100
METER 110
SCROLL 120
SLIDER 130
SLIDEROID 140
STRIPCHART 150
TITLE 160
TYPEIN 170
TYPEOUT 180

see also:
"Actuator Descriptions".

upfunc (function pointer)

Actuator field:
Upfunc is one of three Actuator action function pointers. If defined by the User,
downfunc is called once when the left mouse button transitions up de-selecting the
Actuator. It is supplied with a pointer to the selected Actuator when it is called.

Panel field:
Upfunc is one of three Panel action function pointers. If defined by the User,
upfunc is called once when the left mouse button transitions up de-selecting the
Panel. It is supplied with a pointer to the selected Panel when it is called.

see also:
tivefunc, downfunc.

130

user data { Void* }
Actuator field:

User_data is a reference pointer to an optional, User defined data structure for the
Actuator.

v_location { long)

(Actuator field) V-location is a constant which indicates the relative position of the
Actuator's value field as depicted in Figure A.2. If vlocation is positive, the value
is displayed with a background box and if vlocation is negative, the value is
displayed without a background box. Zero in vlocation prevents value display.
V_location may take on any of the following values:

LABELOFF 0

BO'TTOMLEFT I NBBOTTOMLEFT -1
BOTT'OM 2 NBBOTTOM -2
BOTTOMRIGHT 3 NBBOTTOMRIGHT -3
RIGHTLOWER 4 NBRIGHTLOWER -4
RIGHT 5 NBRIGHT -5
RIGHTUPPER 6 NBRIGHTUPPER -6
TOPRIGHT 7 NBTOPRIGHT -7
TOP 8 NBTOP -8
TOPLEFT 9 NBTOPLEFT -9
LEFTUPPER 10 NBLEFTUPPER -10
LEFT 11 NBLEFT -11
LEFTLOWER 12 N-B_LEFTLOWER -12
CENTER 13 NB_CENTER -13
FIXED 14 NB_FIXED -14
FIXEDCENTER 15 NB_FIXEDCENTER -15

El [11 F5

Figure B.2 Value Locations

131

FIXED and NB_FIXED are special constants that allow the User to explicitly
specify value position using vx, vy, vw, vh, vbx, and vby. The ToolBox will only
adjust lw and lh so that the background box will fully include the value.
FIXEDCENTER and NBFIXEDCENTER are similar to FIXED with the
added property that the text of the value will be centered within the User specified
value area.

see also:
compute-valuelocationo, compute-locationo, setactuatorformatO,
setvalue_locationO, setvaluesizeo, vx, vy, vw, vh, vbx, vby.

val (float)

Actuator field:
Val contains the current value of an Actuator. It is set by the Actuator's
newvalfunc or processfunc, or may be set directly by the User. Val is initially set
to initval by fix-actuatorO and is limited by minval and maxval. For continuous
Actuators (e.g. Sliders), val will range any where between minval and maxval, and
for discrete Actuators (e.g. Buttons), val is set to maxval when the Actuator is
selected or 'ON' and to minval when it is de-selected or 'OFF'. Set_redraw(
should be called after val is directly changed by User code.

see also:
initval, maxval, minval, setredrawo, newvalfunc, processfunc.

value._fmt (string)
Actuator field:

Value_fmt is a string which is use to format the display of an Actuator's value.
Format characters are standard as specified by the ANSI C printf function.
Value_fmt may be set using set-value_formato. Default value_fmt is "%-+#4.2f'
which displays the value left justified with sign, decimal point and 2 digits after
the decimal point.

see also:
set.value_formato.

value font factor (float)
Actuator field:

Value_font_factor specifies the scaling factor which is applied to the Actuator's
value font The scaling is approximately equal to an equivalent point size (e.g.
valuefontfactor = 12.0 approximates display of value numerals in a 12 point
font). Any non-negative fontfactor is allowed, although reasonably usable
fontfactors range from 8.0 to 120.0.

132

vbx f Coord)

Actuator field:
Vbx is the x direction border offset in Panel relative coordinates of the Actuator's
value (i.e. the space between the value background box boundary . -,A ,"'- lue
string). It is recalculated after changes by fix-actuatoro.

see also:
vx, vy, vw, vh, vby, fixactuatoro.

vby { Coord)

Actuator field:
Vby is the y direction border offset in Panel relative coordinates of the Actuator's
value (i.e. the space between the value background box boundary and the value
string). It is recalculated after changes by fix-actuatoro.

see also:
vx, vy, vw, vh, vbx, fix-actuatoro.

vh (Coord)

Actuator field:
Vh is the height in Panel relative coordinates of the Actuator's value display,
including the background box. It is recalculated after changes by fixactuator().

see also:
vx, vy, vw, vbx, vby, fix-actuatoro.

visible (Boolean)

Actuator field:
Visible controls whether or not the Actuator is drawn on the host Panel. Use
fixactuator0 after explicitly changing the visible field. Default setting is TRUE.

Panel field:
Visible controls whether or not the Panel is displayed. Setting visible FALSE or
calling set-panelinvisible0 will close the Panel's IRIS window making the Panel
invisible. Setting visible TRUE or calling setpanel-visible0 will create and
initialize an IRIS window for the Panel and draw the Panel. Use fixpanel() after
explicitly changing the visible field. Default setting is TRUE.

see also:
fix-actuatoro, fixpanel0, setpanel-invisibleo, setpanelvisibleo.

vobj (graphics object)

Panel field:
Vobj is a IRIS graphics object containing the viewing transformation in effect for
the Panel. It is used by the Panel ToolBox to map a screen relative mouse cursor
position into Panel relative coordinates.

133

vw [Coord)

Actuator field:
Vw is the width in Panel relative coordinates of the Actuator's value display,
including the background box. It is recalculated after changes by fix_actuatoro.

see also:
vx, vy, vh, vbx, vby, fix-actuatoro.

vx {Coord)

Actuator field:
Vx is the x location in Panel relative coordinates of the Actuator's value display.
The value display is positioned relative to the Actuatur's origin (lower left comer).
Vx is recalculated after changes by fixactuatoro.

see also:
vy, vw, vh, vbx, vby, fixactuator(.

vy (Coord)

Actuator field:
Vy is the y location in Panel relative coordinates of the Actuator's value display.
The value display is positioned relative to the Actuator's origin (lower left comer).
Vy is recalculated after changes by fix-actuatoro.

see plso:
v,. vw, vh, vbx, vby, fix-actuatoro.

w (Coord in Actuator, long in Panel field)

Actuato" field:
W s the width of the Actuator in Panel relative coordinates. Bevel width (bw) is
ou'.side of width. W may be changed at any time to alter the displayed width of the
Actuator. Fixactuator(should be called after such a change.

Panel field:
W is the width of the Panel in screen relative units (pixels). W does not include
pixels used to draw the IRIS window manager border if one is included. W may
be changed at any time to alter the displayed width of the Panel. Fix_panelO
should be called after such a change.

see also:
x, y, h, bw, fix-actuatoro, fixpanel().

wb (Coord)

Panel field:
Wb specifies the Panel relative coordinate system value for the bottom edge of the
Panel (negative y axis). It is set to 0.0 by the Panel ToolBox if screenrelative is
TRUE, and it must be set by the User if screen_relative is FALSE.

see also:
wl, wr, wt, wn, wf, screenrelative, fixpanel()

134

wf {Coord)

Panel field:
Wf specifies the Panel relative coordinate system value for the far extent of the
Panel (positive z axis). It is set to 0.0 by the Panel ToolBox if screenrelative is
TRUE, and it must be set by the User if screenrelative is FALSE.

see also:
wl, wr, wb, wt, wn, screen-relative, fix-panel()

wi I Coord }

Panel field:
WI specifies the Panel relative coordinate system value for the left edge of the
Panel (negative x axis). It is set to 0.0 by the Panel ToolBox if screenrelative is
TRUE, and it must be set by the User if screenrelative is FALSE.

see also:
wr, wb, wt, wn, wf, screen-relative, fix-panel()

wn (Coord)

Panel field:
Wn specifies the Panel relative coordinate system value for the near extent of the
Panel (negative z axis). It is set to 0.0 by the Panel ToolBox if screen-relative is
TRUE, and it must be set by the User if screenrelative is FALSE.

see also:
wl, wr, wb, wt, wf, screen-relative, fixpanel()

wr (Coord)

Panel field:
Wr specifies the Panel relative coordinate system value for the right edge of the
Panel (positive x axis). It is calculated by the Panel ToolBox if screen-relative is
TRUE, and it must be set by the User if screen_relative is FALSE.

see also:
wl, wb, wt, wn, wf, screen-.relative, fix panel()

wt (Coord)

Panel field:
Wt specifies the Panel relative coordinate system value for the top edge of the
Panel (positive y axis). It is calculated by the Panel ToolBox if screen_relative is
TRUE, and it must be set by the User if screen_relative is FALSE.

see also:
wl, wr, wb, wn, wf, screen_relative, fixpanel()

135

x {Coord in Actuator, long in Panel field)
Actuator field:

X is the x location of the Actuator's lower left comer in Panel relative coordinates
within the host Panel or Parent Actuator. X may be changed at any time to alter
the displayed location of the Actuator. Fixactuator() should be called after such
a change.

Panel field:
X is the x location of the Panel's lower left comer in screen relative units (pixels).
X may be changed at any time to alter the displayed position of the Panel.
Fix-panel() should be called after such a change.

see also:
y, w, h, bw, fix-actuatoro, fixpanel().

y (Coord in Actuator, long in Panel field)
Actuator field:

Y is the y location of the Actuator's lower left comer in Panel relative coordinates
within the host Panel or Parent Actuator. Y may be changed at any time to alter
the displayed location of the Actuator. Fixactuator() should be called after such
a change.

Panel field:
Y is the y location of the Panel's lower left comer in screen relative units (pixels).
Y may be changed at any time to alter the displayed position of the Panel.
Fix-panel() should be called after such a change.

see also:
x, w, h, bw, fixactuatoro, fix-panel().

zbuffer { Boolean)

Panel field:
Zbuffer controls whether or not the Panel is drawn using the IRIS zbuffer and a
mode of MSINGLE or MVIEWING. Setting zbuffer to TRUE initializes the
zbuffer, and sets the drawing mode to MVIEWING. Setting zbuffer to FALSE sets
the drawing mode to MSINGLE. SetpanelO appropriately sets the drawing mode
before any Panel is drawn based on this flag. Fix-panel() must be called after a
change to zbuffer. Default setting is FALSE.

see also:
fix-panelO.

136

....... ~...

Actuator Detailed Specifications

The NPS Panel ToolBox provides a wide variety of pre-designed user interface objects
called Actuators. Each has a distinct function and corresponding appearance. Most
Actuators may be selected and controlled using the mouse cursor and left mouse button
(referred to as the left-mouse). Several Actuators provide only a display of data and are not
directly controlled using the mouse.

Actuators provided in the ToolBox:

box menu
bufferact meter
button scroll
cycle slider
dial slideroid
dirview stripchart
fileview title
frame typein
list-act typeout
listview

Summary of Actuator Function and Appearance

Box

Box provides a rectangular box with a user defined line width, foreground color and
background color. It may be used to visually group related Actuators, bound display
areas, divide Panels, etc. A Box background may be color filled or clear.

Bufferact

BufferAct is a sub-actuator which is used in two standard Actuators: Fileview and
Typeout. The BufferAct takes a character string, or buffer, and displays it using a
fixed font size of 12 point and non-proportional spacing. Carriage returns and line
feeds are treated as new lines, and the default width is 80 columns.

Button

Button is a basic Actuator which has two states: 'ON' or 'OFF'. The ToolBox provides
three functional sub-types of button: simple which is 'ON' only when selected with the
left-mouse, toggle which swaps state with each left-meuse selection, and radio which
forms into a group with only the most recently selected button 'ON' and the others
'OFF'.

137

Cycle

Cycle is a compound Actuator which displays one of a set of sub-actuators that have
been added to it. The User may advance through the list of sub-actuators by selecting
the cycle body outside of the displayed sub-actuator.

Dial

Dial is a basic actuator that provides a means for 360 degree selection and control. Its
face can be customized in terms of radius, number of tics and tic size. Its control
characteristics can be modified in terms of control mode (wrap or block), winds and
fine factor.

Dirview

Dirview is a compound actuator that provides a means to view the contents of a
directory and select a file. The current directory is displayed at the top of the Dirview.
The accept button copies the currently selected item to the user-defined target if the
item is a file name, or changes directories if it is a directory name. The reset button
returns the Dirview to the current working directory of the user.

Fileview

Fileview is a compound actuator that provides a means to select and view a file. The
default dimensions of the text buffer are 15 lines and 80 columns, with lines exceeding
the width of the text buffer automatically wrapped. The width and height of the
Fileview actuator can be re-sized. A user specified size limits ,he buffer size of the
displayed file (see BufferAct). The accept button is used to copy high-!ighted text to
the user-defined target.

Frame

Frame is a compound Actuator used to group and display a set of sub-actuators.
Actuators added to and displayed within a Frame have their own origin and scalefactor.
Manipulations applied to the Frame are passed on to the sub-actuators. For example if
the Frame is set as invisible or non-selectable, all of the sub-actuators become invisible
or non-selectable.

List_act

ListAct is a sub-actuator which is used in two standard Actuators: Dirview and
Listview. The List_Act List pointer is a linked list of user-defined items that is
constructed with the ToolBox functions create-list0 and create_nodeO.

Listview

Listview is a compound actuator that provides a means to view a list of user-defined
items. The default dimensions of the Listview are 10 lines (items) and 25 columns. The
currntly selected item is displayed at the top of the Listview and is stored in the
dispname field. The additem typein is used to add a new item to the list. The accept
button is copies the currently selected item to the user-defined target.

138

Menu
Menu is a basic actuator that provides a means to make a selection. The default layout
of a menu is one row and six columns, and this can be modified as necessary. The cell
size as well as the font factor can be modified.

Meter

Meter is a compound actuator that provides a means to display output. Types include
an arc meter, a dial meter, a horizontal bar meter and a vertical bar meter. The face of
the meter can be customized in terms of the number of tics and their size, and the size
of the mark. The limits of the meter can be displayed, and their format can be specified.
The value for each type can be displayed as a filled meter or as a standard mark. A
damping factor can be specified for all meter types.

Scroll
Scroll is a compound Actuator that groups a set of sub-actuators and provides the
means to scroll a relatively small display area across a larger Frame containing the sub-
actuators. Internally, the Scroll behaves the same as a Frame with the addition of
controlling sliders.

Slider

Slider is a basic actuator that provides cuntinuous control of a value between two user-
specified limits. The current value is indicated by the position of the slider bar within
the rectangular body. The two types sliders provided are bar and strip. Orientation of
the body and control axis can be vertical or horizontal.

Slideroid

Slideroid is basic Actuator which provides continuous control of a single numeric
value. It allows differential control and absolute control of the value based on the
region that is selected with the left-mouse. The value display includes five significant
figures in the mantissa and a two figure exponent. A reset region resets the value to the
User specified initval. A set target region copies the current value to a specified target
if defined.

Stripchart

Stripchart is a basic actuator that provides a means to display a running history of
values. Up to two pens can run simultaneously on each chart.

Title

Title is a basic actuator that provides a means to display a string of characters. The font
size scales proportionately to the height of the title. The width is adjusted automatically
to ensure uniformity. Foreground and background colors can be modified.

Typein
Typein is a basic actuator that provides a means to accept input from the keyboard.
Multiple typeins are allowed, with each typein operating independently.

139

Typeout

Typeout is a compound actuator that provides the user a means to view any text-based
output. The default dimensions of the 'ext buffer are 5 lines and 80 columns, with lines
exceeding the width of the text buffer -z-.,matically wrapped. A user specified size
limits the buffer size of the displayed text (see BufferAct).

Specific Details of Each Actuator

The following sub-section describes each actuator including the detail structure,
method of creation, appearance, function and use. The descriptions summarize any special
functions provided to access or control an actuator.

140

Box

typedef struct boxtype { /* BOX actuator detail */
long line_width; /* Box outline line width
long frgnd-color; /* Box outline color
long bkgnd_color; /* Box background color *1

Box;

Creation:

createactuator(box);

Description:

Box provides a rectangular box with a user defined line width, foreground color and
background color. It may be used to visually group related Actuators, bound display
areas, divide Panels, etc.

Appearance:

A rectangular polygon drawn with the line width specified in pixels, line color as
specified by the frgndcolor index, and background fill color as specified by the
bkgnd_color index. Default line-width is 2. Default frgnd.color is ACT_BORDER
(black). Default bkgndcolor is CLEAR (no fill is drawn).

Function: not selectable.

Value: none.

Special Functions: none.

Notes: none.

see also: Frame.

141

Buffer Act

typedef struct buffer actjtype (/* BUFFERACT actuator detail */
long mode; /* BufferAct mode of operation */
char *buf; /* text to be displayed */
char *delimstr; /* auto 'word' selection delimiters */
long start; /* first char to display (in upper-left) */
long dot; /* insertion point */
long mark; /* other end of selection region */
long col, lin; /* columns & lines in char positions */
long len; /* number of chars in buffer */
long size; /* buffer size in bytes */
Coord ch; /* character height in pixels */
Coord cw; /* character width */
Coord cd; /* character descender */
float newval; /* most recently set value for bufferact */

BufferAct;

Creation:

createactuator(buffer-act);

Description:

Buffer_Act is a sub-actuator which is used in two standard Actuators: Fileview and
Typeout. The BufferAct takes a character string, or buffer, and displays it using a
fixed font size of 12 point and non-proportional spacing. Carriage returns and line
feeds are treated as new lines, and the default width is 80 columns. The Buffer_Act
provides six modes of control: BUFACT_FIXED constrains the buffer to a maximum
size, BUFACT_FREE allows an unlimited buffer size, BUFACT_NORMAL
provides a cursor and allows text in the buffer to be high-lighted,
BUFACTNOCURSOR allows text to be high-lighted but does not provide a cursor,
BUF_ACT_NOREGION provides a cursor but does not allow text to be high-lighted,
and BUF_ACT_NOCONTROL provides only the buffer with no cursor and no high-
lighting of text. The variable delimstr can be used to specify delimiting characters so
that the cursor moves automatically from string to string.
Buffer_Act functional modes specified may be combined using 'or':

BUFACTFIXED Ox01
BUF ACT_FREE 0x02
BUFACTJNORMAL 0x04
BUF_ACTI.NOCURSOR 0x08
BUFACT_NOREGION OxlO
BUFACT-NOCONTROL
(BUFACTNOCURSOR I BUFACI_NOREGION)

142

Appearance:

A BufferAct is rendered as a rectangle with a negative bevel. Text is black against an
off-white background. The cursor is dark-blue, with underlying text intense white.
High-lighted text is intense white on a light-blue background.

Function:
The left-mouse is used to place the cursor in the text region. Holding down the left-
mouse and moving it high-lights text in the region. If the left-mouse is held down and
moved out of the text region, either above or below, the text will scroll in the
corresponding direction.

Value: none.

Special Functions:

add_to_buffer(Actuator*, char*) - appends text referenced by second argument to end
of buffer.

bufferwindowdown(Actuator*) - move the Buffer_Act viewing window down one
line of text at a time causing text to appear to scroll up.

buffer_windowup(Actuator*) - move the Buffer_Act viewing window up one line of
text at a time causing text to appear to scroll down.

copy.bufferal(Actuator*, char*) - copy the entire contents of the Buffer_Act buffer
to the destination referenced by the second argument User must ensure that
destination memory allocation is large enough.

copy-buffer..block(Actuator*, char*) - copy the contents of the high-lighted block of
text from the Buffer_Act buffer to the destination referenced by the second
argument User must ensure that destination memory allocation is large enough.

load_buffer(Actuator*, char*) - load BufferAct buffer with text referenced by second
argument replacing any previously existing text in the buffer.

Notes: none.

see also: Fileview, Typeout.

143

Button

typedef struct button-type { /* BUTTON actuator detail */
long btype; /* Button sub-type */
long shape; /* Button shape */
long symbol; /* Symbol if defined
float orientation; /* Button symbol orientation */

I Button;

Creation:

createactuator(button);
createactuator(simpleibutton);
create_actuator(togglebutton);
create_actuator(radio-button);
create_actuator(arrow-button);
create_actuator(double_arrowbutton);
createactuator(label_button);

Description:

Button is a basic Actuator which has two states: 'ON' or 'OFF'. The ToolBox provides
three functional sub-types of button: simple which is 'ON' only when selected with the
left-mouse, toggle which swaps state with each left-mouse selection, and radio which
forms into a group with only the most recently selected button 'ON' and the others
'OFF'.
Button functional sub-types (btype) are specified:

BUITONSIMPLE 21
BUTTONTOGGLE 22
BUTTONRADIO 23

Appearance:

A Button may be rendered as a circle or a rectangle as specified in shape:
CIRCLE 0
RECTANGLE 1

A Button may display one of several symbols on its face as specified by symbol:
NOSYMBOL 0
TOGGLE I
ARROW 2
SINGLEARROW 2
DOUBLEARROW 3
LABEL 4

TOGGLE presents a highlighted X for rectangular Buttons and 'spot' for circular
Buttons which appears only when the Button is 'ON'. SINGLE_ARROW and
DOUBLEARROW present a single or double triangle as a directional symbol which
appears in an inverse color scheme when the Button is 'ON'. LABEL presents the text
of the Actuator label centered on the face and highlighted when the Button is 'ON'.

144

Orientation applies only to a Button with SINGLEARROW or DOUBLEARROW
specified for its symbol.

ARROWUP 0.0
ARROWRIGHT 90.0
ARROWDOWN 180.0
ARROWLEFT 270.0

Function:

A simple Button functions as a momentary contact switch which is 'ON' while selected
with the left-mouse and 'OFF' at all other times. A toggle Button retains its state and swaps
it ('OFF' to 'ON' or vice versa) once per selection.

A radio Button must be combined with other radio Buttons all having identical
group-ids to form a group. After creating one or more sets of radio Buttons having
common group-ids and adding them to a Panel, call reset.groups0 to properly link the
groups together. An additional radio Button may be added to an existing group by
setting its group-id to that of the group and calling add_to._.groupo. A radio Button can
be removed from its group by calling removefrom-groupo.

Value:
Button val is maxval when 'ON' and minval when 'OFF'.

Special Functions:

is_button_on(Actuator*) - returns state of the specified Button, TRUE if 'ON' and
FALSE if 'OFF'.

Notes: none.

see also: group-id, reset..groupso, add_to_.groupo, removefrom .groupo.

145

Cycle

typedef struct cycle-type { /* CYCLE actuator detail *
Actuator *frame, /* Cycle surrounding frame *1

memberlist, / Cycle member list *1
prior, / reference to prior shift button */
next; / reference to next shift button */

Cycle;

Creation:

createactuator(cycle);

Description:

Cycle is a compound Actuator which displays one of a set of sub-actuators that have
been added to it. The User may advance through the list of sub-actuators by selecting
the cycle body outside of the displayed sub-actuator.

Appearance:

The Cycle is rendered as a rectangular enclosure large enough to surround the current
sub-actuator. Only the current sub-actuator is displayed within the Cycle frame. The
Cycle adjusts to accommodate changes in current sub-actuator size as it is advanced.

Function:

Sub-actuators are selected in the normal fashion. The current sub-actuator is advanced
when the Cycle is selected with the left-mouse button while the mouse-cursor is
outside of the current sub-actuator.

Value: assigned the value of the most recently actuated sub-actuator.

Special Functions:

addmember-toscycle(Actuator* sa, Actuator* parent) - Add the sub-actuator
specified in the first argument to the parent Cycle specified in the second
argument. Both the Cycle and sub-actuator are fixed after the addition.

Notes: none.

see also: Frame, Scroll.

146

Dial

typedef struct dialtype { /* DIAL actuator detail
long shape; /* Shape { CIRCLE or RECTANGLE) */
Coord r; /* Dial Radius */
long majortics; /* Number of major tics */
long minorjtics; /* No. of minor tics between each major */
float tl, tw; /* Tic mark length and width
float ml, mw; /* Indicator mark length and width */
float theta, thetaset; /* Theta current value and reset value */
float mintheta, maxtheta; /* Theta min and max for dial */
long mode; /* Mode: wrap values or block ends */
float winds; /* Number of revolutions min to max */
float reference; /* Reference position for fine control */
float finefactor, /* Fine control factor */

Dial;

Creation:

createactuator(dial);

Description:

Dial is a basic Actuator which has two modes as specified in mode:
DIALWRAP Ox01
DIALBLOCK 0x02

Wrap mode allows the value mark to be moved freely around the dial and cross through
the minval and maxval end points. Block mode causes the value mark to be restricted
in movement to the endpoints. Winds specifies the number of revolutions
corresponding to the value range from minval to maxval. Default winds = 1. Finefactor
specifies the reduced sensitivity factor to be applies when FineAdjust is selected.
Default finefactor = 0.1.

Appearance:
A Dial may be rendered as a circle or a rectangle as specified in shape:

CIRCLE 0
RECTANGLE 1

The number and size of tics are specified by the user. The size of the mark is also
specified by the user. The standard diameter of the face is 0.8 times the minimum of
the width and height of the dial.

Function:

The dial is activated with the left-mouse. Fine control is achieved either by using the
left-mouse and middle-mouse buttons together, or by using the left-mouse with a
control key.

147

Value:
The value of a dial is determined by the mark position between the spcified endpoints.

Special Functions: none.

Notes: none.

148

Dirview

typedef struct dirview-type { /* LISTVIEW actuator detail */
Actuator *dirlist; /* Directory ListAct pointer */
Actuator *accept; /* accept string actuator pointer */
Actuator *reset; /* delete string actuator pointer */
Actuator *scroll-bar; /* Scroll bar actuator pointer */
Actuator *scroll-up; /* Scroll up arrow actuator pointer */
Actuator *scroll-down; /* Scroll down arrow actuator pointer */
char filename[I; /* File name currently chosen
char disp-filename[]; /* Displayed filename */
char dir-path[]; /* Full-directory path currently chosen */
char dispdirpath[]; /* Displayed (truncated) directory path */
char user_filename[]; /* Complete filename for user */
char *target; /* Target for entry accept transfer */

} Dirview;

Creation:

create_actuator(dirview);

Description:

Dirview is a compound actuator that provides a means to view the contents of a
directory and select a file. The Dirview actuator controls three types of basic actuators:
a List-Act (dirlist), a scrollbar (scroll-bar), and buttons (accept, reset, scroll-up and
scroll_down). The default dimensions of the Dirview are 10 lines (entries) and 25
columns. The width and height of the Dirview actuator can be re-sized. The accept
button copies the currently selected item to the user-defined target if the item is a file
name, or changes directories if it is a directory name. The reset button returns the
Dirview to the current working directory of the user. Item names that exceed the width
of the display (e.g. filenames complete with path specification) are truncated for
display purposes only, the complete name is stored in the data structure.

Appearance:

A Dirview is rendered as a rectangle with the scroll buttons and scroll bar on the left,
the List_Act region in the middle, and the accept and reset buttons along the bottom.
The current directory is displayed in a high-lighted box at the top of the Dirview above
the ListAct. In the ListAct region, directory entries are black against an off-white
background, and the currently selected entry is intense white on a light-blue
background.

Function:

The left-mouse is used to place the cursor in the text region, scroll through the items
using the scroll buttons and the scroll bar, send ' selected item to a target using the
accept button if the item is a file name, or else change directories if it is a directory
name, and reset the Dirview to the current working directory using the reset button.
Holding down the left-mouse and moving it in the text region scrolls through the list.

149

If the left-mouse is held down and moved out of the text region, either above or below,

the text will scroll in the corresponding direction.

Value: The current entry selection is maintained in the userfilename field.

Special Functions:

copy-dirview-entry(Actuator*, char*) - copy the current entry selection from
userfilename to the destination specified by the second argument. User must
ensure that destination memory allocation is large enough.

Accept Button - copies the current entry selection from userfilename to the
destination referenced by target field if entry is a file name, and changes directory
if entry is a directory.

Reset Button - resets the Dirview to the current working directory of the user.

Notes: none.

see also: ListAct, Listview

150

Fileview

typedef struct fileview-type { /* FILEVIEW actuator detail
float r.ewval; /* most recently set value for fileview */
Actuator *fbuffer; /* buffer for file listing
Actuator *filename; /* filename typein actuator pointer */
Actuator *accept; /* accept string actuator pointer *1
Actuator *scroll-bar; /* Scroll bar actuator pointer */
Actuator *scroll-up; /* Scroll up arrow actuator pointer */
Actuator *scroll-down; /* Scroll down arrow actuator pointer */
char *target; /* Target for entry accept transfer

Fileview;

Creation:

create_actuator(fileview);

Description:

Fileview is a compound actuator that provides a means to select and view a file. The
Fileview actuator combines four types of basic actuators: a bufferact (f.buffer), a
typein (filename), a scroll_bar (scroll_bar), and buttons (accept, scrollup and
scrolldown). The default dimensions of the text buffer are 15 lines and 80 columns,
with lines exceeding the width of the text buffer automatically wrapped. The width and
height of the Fileview actuator can be re-sized. A user specified size limits the buffer
size of the displayed file (see Buffer_Act). The accept button is used to copy high-
lighted text to the user-defined target.

Appearance:
A Fileview is rendered as a rectangle with the scroll buttons and scroll bar on the left,
the buffer_act text region in the middle, and the typein and accept buttons along the
bottom. In the text region, text is black against an off-white background, the cursor is
dark-blue with underlying text intense white, and high-lighted text is intense white on
a light-blue background.

Function:

The left-mouse is used to place the cursor in the text region, scroll through the text
using the scroll buttons and the scroll bar, send selected text to a target using the accept
button, and load a file using the typein. Holding down the left-mouse and moving it
high-lights text in the region. If the left-mouse is held down and moved out of the text
region, either above or below, the text will scroll in the corresponding direction.

Value: none.

151

Special Functions:

copy-fileview-block(Actuator*, char*) - copy the contents of the high-lighted block
of text from the buffer to the destination referenced by the second argument User
must ensure that destination memory allocation is large enough.

loadfileview(Actuator*, char*) - load the Fileview buffer with text from the file
specified by the second argument.

Notes: none.

see also: BufferAct, Typeout.

152

Frame

typedef struct frametype { /* FRAME actuator detail
long mode; /* Mode of Frame operation */
Coord offx, offy; /* Origin offset of Frame display */
Coord minx, maxx, /* Bounding box for all sub-actuators */

miny, maxy; /* within Frame.
Coord margin; /* margin for Frame bounding box

} Frame;

Creation:

createactuator(frame);

Description:

Frame is a compound Actuator used to group and display a set of sub-actuators.
Actuators added to and displayed within a Frame have their own origin and scalefactor.
Manipulations applied to the Frame are passed on to the sub-actuators. For example if
the Frame is set as invisible or non-selectable, all of the sub-actuators become invisible
or non-selectable.

Appearance:

The Frame is rendered as a rectangular enclosure with a negative bevel. Any actuators
visible within the limits of the Frame are drawn.

Function:

Sub-actuators are selected and controlled in a normal fashion. The Frame itself may be
assigned action functions which will be processed after those of the selected sub-
actuator.

Value: assigned the value of the most recently actuated sub-actuator.

Special Functions:

add_member_to_frame(Actuator* sa, Actuator* parent) - Add the sub-actuator
specified in the first argument to the parent Frame specified in the second
argument. Both the Frame and sub-actuator are fixed after the addition.

Notes: none.

see also: Cycle, Scroll.

153

List Act

typedef struct listact_type { /* LIST_ACT actuator detail
Link-list *List; /* Specified List
Listnode *selectednode; /* Pointer to selected entry node */
char selected-name[]; /* Name of selected item */
long selected-item; /* Sequential number of selected item */
long totalitems; /* Total number of items in list */
long display-lines; /* Number of entries displayed in list */
float newval; /* Most recently set value for list
float fontfactor; /* Font factor for item display */

List-Act;

Creation:

createactuator(listact);

Description:

ListAct is a sub-actuator which is used in two standard Actuators: Dirview and
Listview. The List_Act List pointer is a linked list of user-def'ned items that is
constructed with the ToolBox functions createlist0 and create_nodeo.

Appearance:

A ListAct is rendered as a rectangle with a negative bevel. The font size of the
displayed items can be defined by the user (font-factor). The text is black against an
o/f-white background. The currently selected item is high-lighted in dark-blue, with
v-iderlying text intense white.

Function:

"The left-mouse is used to select an item in the text region. If the left-mouse is held
cown and moved out of the text region, either above or below, the text will scroll in
the corresponding direction.

Value: none.

Spec, d Functions:

. Id_to_list act(Actuator*, long order, char *item) - insert the item specified by the
third argument into the ListAct list in the order specified by the second argument.
Order: HEAD 1, TAIL 2, ASCENDING 3, and DESCENDING 4.

c ,py_listact_entry(ActuaJr*, char*) - copy the currently selected item from
selectedname to the destination specified by the second argument. User must
ensure that destination memory allocation is large enough.

initialize_list-act(Actuator*, Link_list*) - initialize the List_Act with a user
constructed linked list of items specified by the second argument.

removeselected_entry(Actuator*) - remove the currently selected item from the
ListAct linked list.

154

Notes: none.

see also: Dirview, Listview, create-nodeo, createjlisto.

155

Listview

typedef struct listview-type { /* LISTVIEW actuator detail
Actuator *lv_list; /* Listview list pointer *1
Actuator *add_item; /* Add Item Typein actuator pointer */
Actuator *accept; /* accept string actuator pointer */
Actuator *delete; /* delete string actuator pointer */
Actuator *scrollbar, /* Scroll bar actuator pointer */
Actuator *scroll-up; /* Scroll up arrow actuator pointer */
Actuator *scroll-down; /* Scroll down arrow actuator pointer */
char dispname[]; /* Item name currently chosen
char *target; /* Target for entry accept transfer */

I Listview;

Creation:

createactuator(listview);

Description:

Listview is a compound actuator that prrvides a means to view a list of user-defined
items. The Listview actuator combines four types of basic actuators: a ListAct
(lv_list), a typein (additem), a scroll_bar (scroll bar), and buttons (accept, delete,
scroll.up and scroll_down). The default dimensions of the Listview are 10 lines
(items) and 25 columns. The width and height of the Listview actuator can be re-sized.
The currently selected item is displayed at the top of the Listview and is stored in the
disp-name field. The additem typein is used to add a new item to the list. The accept
button is copies the currently selected item to the user-defined target. Item names that
exceed the width of the display (e.g. filenames complete with path specification) are
truncated for display purposes only, with the complete name stored in the data
structure.

Appearance:
A Listview is rendered as a rectangle with the scroll buttons and scroll bar on the left,
the ListAct region in the middle, the typein above the ListAct, and the accept and
delete buttons along the bottom. The current item is displayed in a high-lighted box
above the List_Act. In the ListAct region, the listed items are black against an off-
white background, and the currently selected item is intense white on a light-blue
background.

Function:
The left-mouse is used to place the cursor in the text region, scroll through the items
using the scroll buttons and the scroll bar, send the selected item to a target using the
accept button, delete the selected item from the list, and add an item using the typein.
Holding down the left-mouse and moving it in the text region scrolls through the list.
If the left-mouse is held down and moved out of the text region, either above or below,
the text will scroll in the corresponding direction.

156

Value: The currently selected item is also maintained in the disp-name field.

Special Functions:

add_to_listview(Actuator*, long order, char *item) - insert the item specified by the
third argument into the Listview linked list in the order specified by the second
argument. Order: HEAD 1, TAIL 2, ASCENDING 3, and DESCENDING 4.

copy-listview-entry(Actuator*, char*) - copy the currently selected item from
disp-name to the destination specified by the second argument. User must ensure
that destination memory allocation is large enough.

loadlistview(Actuator*, Link_list*) - load the Listview with the user constructed
linked list specified by the second argument.

Notes: none.

see also: ListAct, Dirview

157

Menu
typedef struct menu-type { /* MENU actuator detail

long cols, rows; /* Number of rows and columns in menu */
float cell -width, cell-height; /* Width and height of menu cells
long menuchoice; /* Most recently selected menu choice */
long on_color, offcolor; /* Label colors when on and off
float font-factor; /* Font factor for labels.

/* Array of menu labels */
char labels[MAXMENU][MAXSTRING_LEN+1];

} Menu;

Creation:

createactuator(menu);

Description:

Menu is a rectangular display of user-defined selections. The number of rows and
columns can be customized. The default dimensions are six rows and one column. The
size of the cells, as well as the font factor for the labels, can be customized.

Appearance:

If the left mouse is held down and moved over the cells, the cell beneath the cursor is
high-lighted, as specified by the oncolor and offcolor fields.

Function:

The left mouse is used to select a menu item. The cursor is placed over the desired
selection and the left mouse is pressed and released. The menu selection is returned on
the up transition.

Value:

The menu_choice field holds the index of the most recently selected menu item.

Special Functions: none.

Notes: none.

see also:

158

Meter

typedef struct metertype { /* METER actuator detail
long mtype; /* Meter type */
Coord r; /* Dial and arc meter Radius
long major-tics; /* Number of major tics */
long minortics; /* No. of minor tics between major tics */
float fl, tw; /* Tic mark length and width
float ml, mw; /* Indicator mark length and width */
long mcolor, /* Indicator mark color */
float thetaset; /* Relative zero position of meter
Actuator *high-limit; /* High limit title actuator */
Actuator *low_limit: /* Low limit title actuator */
Boolean display-limits; /* Display minval and maxval limits */
char limits_fmt[MAX_FMTLEN+1]; /* limits display format str
long damping factor, /* Number of past values to average */
long history-ndx; /* Current beginning of history
float *history; /* Series of meter values for damping */

) Meter;

Creation:

createactuator(meter);
createactuator(arc_meter);
createactuator(filled_arc_meter);
createactuator(dia-meter);
create_actuator(filed_dial_meter);
createactuator(vbarmeter);
create_actuator(vstripmeter);
createactuator(hbarmeter);
createactuator(hstrip_meter);

Description:

Meters are output devices designed to graphical display numerical data.

Appearance:
Standard arc meters are rendered as rectangles with a half-circle shaped inverted dial.

Arc dial meters are rendered as rectangles with a complete circle enclosed. Bar meters
are rendered as rectangles with the value mark moving along the length of the actuator.
Standard meters have a single mark to indicate the current value. Strip and filled meters
fill the meter from the initial value to the current value with a distinct color. The type
of meter is specified in the mtype field:

METERARC Ill
METERARCFILLED 112
METERDIAL 113
METERDIALFILLED 114
METERVBAR 115

159

METERVSTRIP 116
METERHBAR 117
METERHSTRIP 118

Limits can be displayed in a specified format, and meter faces can be customized in
terms of the number and size of tic marks, the size and color of the mark, and the radius
of the dial for arc and dial meters.

Function:

The meter is driven by the application. Damping can be induced using the
damping-factor field.

Value: none (the meter is an output device).

Special Functions:
set_meter value(Actuator*, float) - Record the value specified in the second argument

into the meter's history array and val attribute. Set the need for redraw.

Notes: none.

see also:

160

Scroll

typedef struct scrolltype { /* SCROLL actuator detail */
Actuator *vscroll, /* Vertical scroll bar controller */

h_scroll, / Horizontal scroll bar controller
cabinet, / Surrounding cabinet frame */
display; / Display frame */

} Scroll;

Creation:

createactuator(scroll);

Description:

Scroll is a compound Actuator that groups a set of sub-actuators and provides the
means to scroll a relatively small display area across a larger Frame containing the sub-
actuators. Internally, the Scroll behaves the same as a Frame with the addition of
controlling sliders.

Appearance:

The Scroll is rendered as a cabinet Frame having a negative bevel with a display
window Frame inside also having a negative bevel. To the left and below the display
is a vertical and a horizontal slider respectively. Sub-actuators are rendered within the
display Frame.

Function:

Only those sub-actuators visible through the display Frame are selectable and
operational. The control Sliders may be used to adjust the location of the display
window relative to the larger Scroll area.

Value: Assigned the value of the most recently actuated sub-actuator.

Special Functions:

add_membertofscroll(Actuator* sa, Actuator* parent) - Add the sub-actuator
specified in the first argument to the parent Scroll specified in the second
argument. Both the Scroll and sub-actuator are fixed after the addition.

Notes: none.

see also: Cycle, Frame.

161

Slider

typedef struct slidertype { /* SLIDER actuator detail
long stype; /* Slider type */
long mode; /* Mode of operation */
float mw, mh; /* Indicator mark length and width
float mbw; /* indicator mark bevel width
long mcolor; /* Indicator mark color */
float reference; /* Reference position for fine control */
float finefactor, /* Fine control factor */

I Slider;

Creation:

createactuator(slider);
createactuator(vbar slider);
createactuator(vstrip slider);
createactuator(hbar-slider);
creL,,e_actuator(hstripslider);

Description:

Slider is a basic actuator that provides continuous control of a value between two user-
specified limits. The current value is indicated by the position of the slider bar within
the rectangular body. The two types sliders provided are bar and strip. Orientation of
the body ,nd control axis can be vertical or horizontal.

Appearance:

Sliders are long rectangles with a bar running perpendicular to the longer dimension.
The bar slides up and down the length of the slider. No highlighting is made when the
bar is selected. Orientation and type of mark is specified in the stype field:

SLIDERVSTRIP 131
SLIDERVBAR 132
SLIDERHSTRIP 133
SLIDERHBAR 134

The mode of the slider is specified in the mode field:
SLIDERBLOCK Ox01

Function:

The slider is controlled using the left mouse. Fine control is achieved using the left and
middle mouse together, or by pressing the control key and left mouse key
simultaneously.

Value:

The value of the slider is the value of the endpoints, set by the user, linearly
interpolated by the position of the slider bar within the bounding rectangle of the slider.

1o2

Special Functions: none.

Notes: none.

see also:

163

Slideroid

typedef struct slideroid-type { /* SLIDEROID actuator detail */
long mode; /* Mode of operation */
Boolean reset, /* Flag indicating to reset val to initval */

settarget; /* Flag indicating to set target variable */
float *target; /* Address of target variable */
float reference; /* Reference position for fine control */
float finefactor, /* Fine control factor *1
float cw, ch, vir, we; /* Char width & height, val w & expel w *

Slideroid;

Creation:

create_actuator(slideroid);

Description:

Slideroid is basic Actuator which provides continuous control of a single numeric
value. It allows differential control and absolute control of the value based on the
region that is selected with the left-mouse. The value display includes five significant
figures in the mantissa and a two figure exponent. A reset region resets the value to the
User specified initval. A set target region copies the current value to a specified target
if defined.

Appearance.

The Slideroid is a rectangular body displaying a floating point number in exponential
format with 5 significant figures. Two controlling regions at the top of the slideroid are
indicated by diamond icons, the left one open and the right one filled. The open
diamond marks differential control and the filled diamond marks absolute control.
Two small regions below the value and labeled with an 'S' and 'R' indicate the set
target and reset controls. Selecting and operating any of the four control regions
displays that region with high-lighting.

Function:

Selection and actuation of the open icon on the top left of the Slideroid body changes
the value at a differential rate proportional to the distance the mouse-cursor is
vertically separated from the control region. If the mouse-cursor is above, the value
increases and vice versa. Selection and actuation of the filled icon on the top right of
th o body changes the value by an absolute amount proportional to the distance the
mouse-cursor is separated from the control region. Above the region increases the
value and below decreases it. Selection of the 'S' control region sends the current value
to the target location if one is specified. Selection of the 'R' control region resets the
Slideroid to its developer specified initval.

Value:

A floating point value between the minval and maxval.

164

Special Functions: none.

Notes: none.

see also:

165

Stripchart

typedef struct stripchart-type { /* STRIPCHART actuator detail */
long stype; /* Stripchart type */
long mode; /* Stripchart mode of operation */
Actuator *high-limit; /* High limit tide actuator */
Actuator *low_limit: /* Low limit title actuator */
Boolean display limits; /* Display minval and maxval limits
char limitsfmt[MAXFMTLEN+1]; /* limits display format str
Boolean Bind_High, Bind-Low; /* Bind the low and high values? */
long num-pts; /* No. of points on stripchart */
long f'rstpt, lastpt; /* Index to first and last points */
float *chart_I; /* 1st array of stripchart values */
float *chart2; /* 2nd array of stripchart values */

Stripchart;

Creation:

create_actuator(stripchart);
createactuator(dualstripchart);

Description:

Stripcharts are rectangular plotting regions that are used to display a history of data
values. As data values are added to the stripchart, they are plotted along the ordinate.
The position along the abscissa reflects the order in which the data values are presented
to the stripchart. Stripcharts automatically scroll to display the most recently added
data.

Appearance:

Stripcharts are rendered with a light background and a black data pen. A optional
second pen is drawn in red. If the limits are displayed, they are placed on the right side
of the rectangle on the upper and lower comers. Stripcharts can have one or two pens.
The default colors for pens one and two are ALTI and ALT2, respectively.

Function:

Stripcharts are output devices and thus don't respond to mouse action. If the
BindfHigh and Low flags are inactive, the stripchart automatically adjusts its high and
low limits to maximize vertical resolution.

Value: none (the stripchart is an output device).

Special Functions:

clear-stripchart(Actuator*) - clear and reset the specified stripchart.
setstripchartvalue(Actuator*, float, float) - Add the values specified in the second

and third arguments to the chart arrays of the specified Stripchart. If the Stripchart
is a single pen Stripchart, the third argument is ignored. Set the need for redraw.

166

Notes: none.

see also: Meter

167

Title

typedef struct title_type { /* TITLE actuator detail */
long bkgndcolor; /* Title background color index */
long frgnd-color; /* Title foreground color index */

I Title;

Creation:

createactuator(title);

Description:

Titles are displays of character strings. They can be static or dynamic, and the color of
both the characters and the background can be customized.

Appearance:

Titles are rendered as a character string in a scalable font. The color of the characters
is defined as the frgnd_color, and the background is defined as the bkgnd_color.

Function: none

Value: none.

Special Functions: none.

Notes: none.

see also:

168

Typein

typedef struct typein-type { /* TYPEIN actuator detail
long mode; /* Termination mode selection
long state; /* Typein current activation state
Linklist *keyboardbuffer, /* Typein keyboard buffer */
char str[TYPEIN_MAXLEN+1; /* Typein string buffer */
char reset-str[TYPEINMAXLEN+1]; /* Typein reset string buffer */
long maxlen; /* Maximum buffer length */
float fontfactor; /* Font for typein. Can be scaled */
char *target; /* Target for completed string */
void (*complete-func)0; /* fn called when typein complete */

} Typein;

Creation:

create_actuator(typein);

Description:

Typeins are used to accept input from the user. When a typein is active, it will accept
input if the cursor is over it and its buffer is not full. Multiple typeins can be active
simultaneously. When a typein is completed, its contents can be copied to a target
destination specified by the user.

Appearance:

Typeins are long rectangles with negative a bevel. When they are active a block cursor
is drawn immediately to the right of the last character. Typeins can be resized, and the
font size of the characters can be scaled.

Function:

Typeins are activated with the left mouse. They are terminated according to the
specified mode:

TYPEINMOUSEON 1
TYPEIN_MOUSEOFF 2

TYPEINMOUSE-ON mode enables the user to complete a typein either by pressing
the return key or left mousing the typein. TYPEINMOUSE_OFF mode only allows
the user to complete a typein by using the left mouse. When completed, the typein will
call the completeJunc0 once. The user can utilize the target field to specify the
location to receive the completed string.

Value: The state field contains the current activation state of the typein:

TYPEINCANCEL -1
TYPEININACTIVE 0
TYPEINACTIVE 1
TYPEIN-.COMPLETE 2

169

Special Functions:

cancel_typein(Actuator*) - Cancel the specified Typein returning the buffer to the
contents it had on activation. Typein buffer is not copied to target and completion
function is not called.

complete_func(Actuator*) - Optional developer defined function to be called upon
completion of Typein entry. This is equivalent to the upfunc of other Actuators
and is provided because a Typein may be active for input without being the
Selected_Actuator for the panel.

get-typein-string(Actuator*, char*) - Gets the specified Typein's buffer string when
the Typein input is complete. Returns the status of the get operation after each call.
As long as the Typein is active for input, it returns PENDING. If the Typein is
cancelled, it returns CANCEL. If successful, it returns COMPLETE.

load-typein-string(Actuator*, char*) - Loads the specified Typein with the string
specified by the second argument.

Notes: none.

see also:

170

Typeout

typedef struct typeout type { /* TYPEOUT actuator detail
Actuator *tbuffer; /* Typeout buffer */
Actuator *scroll-bar; /* Scroll bar actuator pointer */
Actuator *scroll-up; /* Scroll up arrow actuator pointer */
Actuator *scroll-down; /* Scroll down arrow actuator pointer */
long buffer-size; /* Size in bytes of typeout buffer */

} Typeout;

Creation:

create-actuator(typeout);

Description:

Typeout is a compound actuator that provides the user a means to view any text-based
output. The Typeout actuator combines three types of basic actuators: a buffer_act
(tbuffer), a scroll_bar (scroll_bar), and buttons (scrollup and scrolldown). The
default dimensions of the text buffer are 5 lines and 80 columns, with lines exceeding
the width of the text buffer automatically wrapped. A user specified size limits the
buffer size of the displayed text (see Buffer_Act). The width and height of the Typeout
actuator can be re-sized.

Appearance:

A Typeout is rendered as a rectangle with the scrollbuttons and scroll bar on the left
and the bufferact text region in the middle. In the text region, text is black against an
off-white background.

Function:

The left-mouse is used to scroll through the text using the scroll buttons and the scroll
bar. If the left-mouse is held down and moved out of the text region, either above or
below, the text will scroll in the corresponding direction. The default cursor control for
the tbuffer is no control. The default buffer size is 1024 bytes.

Value: none.

Special Functions:

add_to_typeout(Actuator*, char*) - appends text referenced by second argument to
end of buffer.

loadtypeout(Actuator*, char*) - load typeout buffer with text referenced by second
argument replacing any previously existing text in the buffer.

Notes: none.

see also: Buffer Act, Fileview, loadtypeouto.

171

ToolBox Function Specifications

The NPS Panel ToolBox provides a complete library of access, processing and control
functions related to both panels and actuators. The ToolBox uses no object oriented method
of isolating the panel, actuator and supporting data structures, so direct access to all
variables is possible. However, we recommend the disciplined use of ToolBox functions
rather than direct reference to the data structures themselves. This sections presents the
ToolBox functions alphabetized within functional group.

Panel Related Functions

activate(Panel*)
Activate the specified panel. Set the panel's active state flag to TRUE.

append-panel(Panel*, PanelList*)
Add the panel specified in the first argument to the tail of the PanelList specified
by the second argument. ToolBox calls fix-panel() after the new panel is added.

clear_flag(Panel*, state flag name)
Clear the specified panel's state flag to FALSE (0).

clear _panel-back(Panel*)
Clear the backbuffer of the window associated with the specified panel.

clear-panelboth(Panel)
Clear both backbuffer and frontbuffer of the window associated with the specified
panel.

clear-panel-front(Panel*)
Clear the frontbuffer of the window associated with the specified panel.

clear._panel overlay(Panel*)
Clear the overlay planes of the window associated with the specified panel.

closepanel(Panel*)
Close the window associated with the specified panel. Close-panel() does not
alter the attributes or state values maintained in the panel structure, so if visible is
not set to FALSE by the application program, the panel will be re-initialized
during the next drawing loop. Set panel_invisibleo is the recommended
procedure for temporarily hiding a panel under application program control.

crea:e_panel0
Create and initialize a new panel setting all default parameters. Customization
may be applied to any attributes after creation. Appendpanel0 or insertpanel()
must be used to add the new panel to a PanelList for processing and drawing. If
modifications are made after the panel is added to the PanelList, fixpanelo must
be called to bind the changes to the panel. Returns a pointer to the new panel.

deactivate(Panel*)
De-activate the specified panel. Set the panel's active state flag to FALSE.

172

deletepanel(Panel*)
Remove the specified panel from its associated PanelList, deleting all actuators
contained on the panel and freeing all associated memory.

draw all.panels(PanelList)
Traverse the specified PanelList, drawing each panel which is visible and either
has at least one changed actuator or has been set for redraw. Non-visible and
unchanged panels are not draw.

drawpanel(Panel*)
If the specified panel is defined, visible and either changed or set for redr. .W, the
ToolBox sets the associated window as active and draws those actuators which
have changed or have been set individually for redraw. If the panel is set for
redraw, then the background is redrawn first followed by all of the actuators. If the
panel is not selectable, a non-selectable cross-hatching is drawn over the panel and
its actuators.

draw-panel-background(Panel*)
If the specified panel is defined and visible, the ToolBox sets the associated
window as active, clears the panel background to the background color and calls
bkgndfunc, the developer defined background function, if specified.

dumppanel(Panel*)
If the panel is defined, the ToolBox dumps all of the attributes of the panel
followed by all of the attributes and details of all the actuators on that panel to a
ascii text file 'panel.txt'.

fix-paiel(Panel*)
Bind changes to the specified panel. If it has been set to not visible, then the
ToolBox closes the associated window. If it is defined and visible, but no window
has been created, the ToolBox creates and initializes the window. If it is defined
and visible, the ToolBox calls the fixfunc referenced in the panel structure to bind
any attribute changes to the panel. Finally, the ToolBox sets the panel for redraw.

insert_panel(Panel*, PanelList)
Add the panel specified in the first argument to the head of the PanelList specified
by the second argument. ToolBox calls fix_panel() after the new panel is added.

is-active(Panel*)
Returns the state of the specified panel's active attribute, TRUE or FALSE. If
TRUE, the panel has been set active for processing the panel action functions.

is-border(Panel*)
Returns the state of the specified panel's border attribute, TRUE or FALSE. If
TRUE, the panel's associated window is rendered with a standard IRIS title bar
and border.

is-changed(Panel*)
Returns the state of the specified panel's actredraw attribute, TRUE or FALSE.
The actredraw attribute is set to TRUE whenever any of the actuators on the
panel change value or state requiring a redraw.

173

isfixed(Panel*)
Returns the state of the specified panel's fixed attribute, TRUE or FALSE. If
TRUE, the panel's associated window may be moved but not re-sized.

is-popable(Panel*)
Returns the state of the specified panel's popable attribute, TRUE or FALSE. If
TRUE, the panel's associated window may be popped to the top of the displayed
set of windows.

is-redraw(Panel*)
Returns the state of the specified panel's redraw_cnt attribute, TRUE or FALSE.
If TRUE, the panel has been recorded as in need of complete redraw.

is_screenrelative(Panel*)
Returns the state of the specified panel's screen_relative attribute, TRUE or
FALSE. If TRUE, the panel's coordinate system is in screen relative units
(pixels). If FALSE, the panel's coordinate system is as specified in the panel
structure.

is_selectable(Panel*)
Returns the state of the specified panel's selectable attribute, TRUE or FALSE. If
TRUE, the panel and its actuators may be selected using the mouse or key-
equivalents.

is_visible(Panel*)
Returns the state of the specified panel's visible attribute, TRUE or FALSE. If
TRUE, the panel is visible for selection, processing and drawing. If FALSE, no
action is taken with respect to the panel.

is_zbuffer(Panel*)
Returns the state of the specified panel's zbuffer attribute, TRUE or FALSE. If
TRUE, the ToolBox initializes and draws the panel in 3 dimensions using the Z-
buffer. Advanced interface displays can be designed using this mode.

panelExito
Graceful exit from ToolBox processing. All 1'n -ls are properly closed and the
overlay planes cleared.

pop-panel(Panel*)
If the specified panel's window is not on top of the displayed set of windows, the
ToolBox pops it to the top.

process-panel-functions(Panel*)
Process the specified panel's User defined action functions, if any. If
TransitionDown is TRUE, the ToolBox calls downfunc. If the panel is active, the
ToolBox calls activefunc. If TransitionUp is TRUE, the ToolBox calls upfunc.
The functions are called in the above specified order.

processpanels(PanelList)
Process the selected panel and the selected actuator of that panel, if any.
Determines the effect of mouse position, button actuation, and keyboar, actuation
on the value and state of the selected objects. The actuator newvalfunc is called
first followed by the action functions if defined, then the panel action functions, if
defined, are called.

174

push-panel(Panel*)
Push the specified panel's window to the bottom of the displayed set of windows.

setPanel(Panel*)
If the specified panel is defined, an associated window exists and the window is
not set, the ToolBox sets the associated window as the current graphics window.

set-flag(Panel*, state flag name)
Set the specified actuator's state flag to TRUE (1).

setpanel(Panel*)
If the specified panel is defined and visible, the ToolBox ensures that the panel is
initialized and then calls setPanel() followed by the appropriate viewing matrix
initializations.

setpanel-attribute(Panel*, attribute field name, value)
For the specified panel, the ToolBox sets the attribute field specified in the second
argument to the value specified in the third argument.

set-panel invisible(Panel*)
If the specified panel is defined and visible, the ToolBox sets its visible attribute
to FALSE and calls fixactuatorO, closing the associated window.

set-panel-location(Panel*, long, long)
Set the x and y coordinates of the specified panel's origin (lower left comer) to the
values specified in the second and third arguments respectively.

set-panel_redraw(Panel*)
Record the need for a complete redraw of the specified panel. The panel's
redraw_cnt is set to 2 so that it will be redraw once in each display buffer.

setpanel_size(Panel*, long, long)
Set the width and height of the specified panel to the values specified in the second
and third arguments respectively.

set-paneltitle(Panel*, char*)
Set the specified panel's title to the string specified in the second argument.

set-panel visible(Panel*)
If the specified panel is defined and not visible, the ToolBox sets its visible
attribute to TRUE and calls fixactuatorO, initializing an associated window and
setting the panel for redraw.

set-panelworld(Panel*, Coord left, right, bottom, top, near, far)
Set the world coordinate system of the specified panel to the values specified in
the second through seventh arguments as indicated in the function prototype.

swapbufferspanel(Panel*)
If the specified panel is defined and visible, the ToolBox swaps the associated
window graphics buffer.

test-flag(Panel*, state flag name)
Returns the specified panel's state flag, TRUE or FALSE.

which panel(PaneList, short.)
Determine which panel is associated with the graphics identifier specified by the
second argument

175

Actuator Related Functions

ACCESS(Actuator type name, Actuator*, detail field name)
Access the specified detail field of the specified actuator. Actuator type name may
be any of the type definitions described in Detailed Actuator Specifications.
ACCESS may be used as the left-hand or a right-hand variable of an equation.

activate(Actuator*)
Activate the specified actuator. Set the actuator's active state flag to TRUE.

addactuator-to_.group(Actuator*, Actuator * list)
Add the actuator specified by the first argument to its corresponding group within
the actuator list specified by the second argument according to group-id. If the
new actuator does not match any of the actuator groupids of the list, it begins a
new group ring by itself.

addsub_actuator(Actuator* sub-act, Actuator* parent)
Add the specified sub-actuator to the specified parent actuator's sa list. The
ToolBox calls fixactuatorO on the parent actuator which binds the changes as
well as calling fixactuatoro on the new sub-actuator.

append_actuator(Actuator*, Panel*)
Add the specified actuator to the tail of the specified panel's list of actuators.
TooBox calls actuator() after the new actuator is added.

CENTERX(Actuator*)
Return the x world coordinate of the center of the specified actuator.

CENTERY(Actuator*)
Return the y world coordinate of the center of the specified actuator.

clear_flag(Actuator*, state flag name)
Clear the specified actuator's state flag to FALSE.

create_actuator(specific actuator initialization function)
Create and initialize a new actuator setting all default parameters using the
specified initialization function. Customization may be applied to any attributes
after creation. Append-actuator() or insertactuator() may be used to add the new
actuator to the desired panel for processing and drawing. Addsub_.actuator() may
be used to add the new actuator to a parent actuator instead. If modifications are
made after the actuator is added, fix_actuator0 must be called to bind the changes
to the actuator. Returns a pointer to the new actuator.

createstandardactuator(long actuator constant)
Create and initialize a new actuator setting all default parameters as specified by
the actuator constant. Returns a pointer to the new actuator.

deactivate(Actuator*)
De-activate the specified actuator. Set the actuator's active state flag to FALSE.

deactivateall(Panel*)
De-activate all actuators linked to the specified panel.

deleteactuator(Actuator*)
Delete the specified actuator from its host panel or parent actuator. The ToolBox
ensures that group lists and auto-processing lists remain intact.

176

delete_aUactuators(Panel*)
Traverse the specified panel's actuator list, deleting each actuator and freeing the
associated memory.

drawactuator(Actuator*)
If defined, visible and in need of a redraw, draw the specified actuator. If it is not
selectable, a non-selectable cross-hatch is draw over it.

drawall_actuators(Panel*)
Traverse the specified panel's actuator list, drawing each actuator that is visible
and in need of redraw.

extractactuator(Actuator*)
Extract the specified actuator from its host panel or parent actuator. The ToolBox
ensures that auto-processing lists and group lists remain intact. Returns a pointer
to the extracted actuator.

fixactuator(Actuator*)
Bind changes to the specified actuator. All sub-actuators if any are also fixed. If
the actuator has a processfunc defined, then the actuator is inserted into its host
panel's automatic processing list. Both label and value display locations are
recomputed. Finally, the ToolBox sets the need for a redraw.

get.maxvalue(Actuator*)
Return the specified actuator's maxval.

get-minvalue(Actuator*)
Return the specified actuator's minval.

get~uniqueID0
The ToolBox provides a continuing series of unique object identification numbers
beginning with negative one and increasing in the negative direction.
Get_uniquejID) returns the next available identification number. This function
call is equivalent to the in-line MACRO UniquelD.

getvalue(Actuator*)
Return the specified actuator's current value.

insertactuator(Actuator*, Panel*)
Add the specified actuator to the head of the specified panel's list of actuators.
ToolBox calls actuator() after the new aCtuator is added.

is-active(Actuator*)

Returns the state of the specified actuator's active attribute, TRUE or FALSE. If
TRUE, the actuator is active.

isactuator_on(Actuator*)
Returns whether or not the specified actuator is 'ON' (val != minval) or 'OFF' (val
-- minval).

isbeveled(Actuator*)
Returns whether or not the specified actuator's has a bevel, TRUE or FALSE.

177

islabelon(Actuator*)
Returns whether or not the specified actuator's label is set to be displayed, TRUE
or FALSE. Any value other than zero (0) in the 1_location attribute field indicates
the label will be displayed.

is_mbeveled(Actuator*)
Returns whether or not the specified actuator's has a mark bevel, TRUE or
FALSE.

is_redraw(Actuator*)
Returns the state of the specified actuator's redraw_cnt attribute, TRUE or
FALSE. If TRUE, the actuator has been recorded as in need of redraw.

is-selectable(Actuator*)
Returns the state of the specified actuator's selectable attribute, TRUE or FALSE.
If TRUE, the actuator may be selected using the mouse or key-equivalent.

isvalue_on(Actuator*)
Returns whether or not the specified actuator's value is set to be displayed, TRUE
or FALSE. Any value other than zero (0) in the v_location attribute field indicates
the value will be displayed.

is-visible(Actuator*)
Returns the state of the specified actuator's visible attribute, TRUE or FALSE. If
TRUE, the actuator is visible for selection, processing and drawing. If FALSE, no
action is taken with respect to the actuator unless it is an automatic actuator which
is processed during each ToolBox processing cycle.

PICK(Coord x, y, xl, yl, x2, y2)
Determine if the given world coordinate location (x, y) is within the specified
rectangular area.

PICKACT(Actuator*, Coord x, y)
Determine if the pick rectangle of the specified actuator contains the given mouse
position (x, y). The pick rectangle includes any bevel defined. Returns a Boolean
TRUE or FALSE.

process-actuator functions(Actuator*)
Process the specified actuator's newvalfunc followed by the User defined action
functions, if any. If TransitionDown is TRUE, the ToolBox calls downfunc. If the
panel is active, the ToolBox calls activefunc. If TransitionUp is TRUE, the
ToolBox calls upfunc. The functions are called in the above specified order.

processnewvalue(Actuator*)
Process the specified actuator after an application program has changed its value.
This function is used to ensure that a change in value is reflected by a
corresponding change in appearance and function.

RAD[US(Actuator*)
Return the radius of the specified actuator. The radius is computed as one-half the
minimum of the width and the height.

removeactuator_from_.group(Actuator*)
Remove the specified actuator from its group ring ensuring the integrity of all
group ring links.

178

reset_.groups(Actuator* list)
Traverse the specified linked list and reset all group rings according to matching
groupid fields. The ToolBox ensures that the group ring for each actuator in the
list is properly set.

setactuator_label(Actuator*, long location, float label_fontjfactor, char* label)
Set the specified actuator's label to the string specified in the fourth argument. Set
the label location and labelfontfactor as specified by the second and third
argument.

setactuator_.location(Actuator*, Coord x, y)
Set the x and y world coordinate location of the specified actuator's origin (lower
left comer).

setactuatorsize(Actuator*, Coord w, h, bw)
Set the width, height and bevel width of the specified actuator.

setattribute(Actuator*, attribute field name, value)
For the specified actuator, the ToolBox sets the attribute field specified in the
second argument to the value specified in the third argument.

set_detail(Actuator type name, Actuator*, detail field name, value)
Set the specified actuator's detail field to the value specified in the fourth
argument. Actuator type name may be any of the type definitions described in
Detailed Actuator Specifications.

set_detail_string(Actuator type name, Actuator*, detail string field name, char*)
Set the specified actuator's detail string field to the string specified in the fourth
argument. Strcpy is used. Actuator type name may be any of the type definitions
described in Detailed Actuator Specifications.

set-flag(Actuator*, state flag name)
Set the specified actuator's state flag to TRUE.

set_label_location(Actuator*, Coord x, y)
Set the x and y location for the specified actuator's label as specified in the second
and third arguments respectively. Label location is relative to the actuator's origin.

setlabelsize(Actuator*, Coord w, h, bx, by)
Set the width, height, border in x and border in y for the specified actuator's label
as specified in the second through fifth arguments respectively. Border values are
between the left or bottom of the bounding box and the label string.

setmaxvalue(Actuator*, float)
Set the specified actuator's maxval attribute to the value specified by the second
argument.

set_minvalue(Actuator*, float)
Set the specified actuator's minval attribute to the value specified by the second
argument.

set_redraw(Acuator*)
Record the need for a redraw of the specified actuator. The actuator's redrawcnt
is set to 2 so that it will be redraw once in each display buffer. The ToolBox sets
the host panel's changedact field to TRUE to ensure drawing of the changed
actuator.

179

setredrawaU(Panel*)
Set the need for redraw in all actuators of the specified panel.

set size(Actuator*, Coord w, h, bw)
Set the width, height and bevel width of the specified actuator.

setjtarget-pointer(Actuator type name, Actuator*, destination pointer)
Set the specified actuator's target pointer to that specified in the third argument.
Actuator type name may be any of the type definitions described in Detailed
Actuator Specifications. The User must ensure that type of destination pointer and
required target correspond.

set_value(Actuator*, float value)
Set the specified actuator's val attribute to the value specified by the second
argument limited by the minval and maxval attribute values.

set_valueformat(Actuator*, long location, float labelfontjfactor, char* format)
Set the specified actuator's value display format to the string specified in the
fourth argument. Set the value display location and value_fontfactor as specified
by the second and third argument.

set_value_location(Actuator*, Coord x, y)
Set the x and y location for the specified actuator's value display as specified in
the second and third arguments respectively. Value display location is relative to
the actuator's origin.

set_valuesize(Actuator*, Coord w, h, bx, by)
Set the width, height, border in x and border in y for the specified actuator's value
display as specified in the second through fifth arguments respectively. Border
values are between the left or bottom of the bounding box and the value string.

test..flag(Actuator*, state flag name)
Returns the specified actuator's state flag, TRUE or FALSE.

UniquelD
The ToolBox provides a continuing series of unique object identification numbers
beginning with negative one and increasing in the negative direction. UniquelD
returns the next available identification number. This in-line MACRO is
equivalent to the function call, get-uniqueIDO.

which_actuator(Actuator* list, Coord x, y)
Determine which if any actuator in the specified list is 'picked' by the locPtion
specified by the second and third arguments. Returns a pointer to the picked
actuator and NULL if none is picked.

Color Management Functions

definecolor_table(long table, entry-index, float r, g, b, a)
Define the specified entry of the specified color table using the r, g, b and alpha
values given by the third through sixth arguments.

setactuatorcolor(Actuator*, long index)
Set the current graphics color using the specified actLator's color table and the
index specified by the second argument.

180

set-panel-color(Panel*, long index)
Set the current graphics color using the specified panel's color table and the index
specified by the second argument.

Error Handling Functions

FatalError(char*)
Print the specified error message to stderr and exits the program.

Perror(char*)
Print the specified error message to stderr and return to calling function.

Font Control Functions

get-strheight(char* string, fmfonthandle, float font-factor)
Returns the height of the specified string for the specified font and font scale
factor.

get.strwidth(char* string, fmfonthandle, float font-factor)
Returns the width of the specified string for the specified font and font scale
factor.

initializeFONTS)
Initialize ToolBox fonts.

setcurrentjfont(fmfonthandle)
Set the ToolBox global font to that specified in the argument.

General Functions

ABS(x)
Returns the absolute value of its argument.

draw_string(char* string, Coord x, y, float font_factor, long color-table, colorjndx)
Draw the text string specified in the first argument at the specified location using
the specified font factor, color table and color table index.

INTERP(lower, upper, proportion)
Returns the specified proportional interpolation between first and second
arguments.

initializeToolBoxO
Initialize all aspects of the NPS Panel ToolBox. This function must be called
before creation, modification, processing or drawing of panels and actuators.

LIMIT(val, lower, upper)
Returns a value limited by the lower and upper bound.

MAX(x, y)
Returns the maximum of two arguments.

MIN(x, y)
Returns the minimum of two arguments.

PROPORTIONOF(val, min, max)
Returns the proportion that the value is of the range specified by the second and
third arguments.

181

List Management Functions

Bottom(Link_list*)
Returns the bottom data node of the specified linked list stack.

clear list(Link-list*)
Remove all list nodes from the specified linked list, re-initializing the header
structure and freeing the associated memory.

countnodes(Linkjlist*)
Returns the number of nodes in the specified linked list.

create_list0
Create the header and control structure for a double linked list.

create_node(Void data)
Create a linked list node with the specified data structure.

create-str(char*)
Create a new character string from the argument string.

Current(Link list*)
Returns the current node of the specified linked list.

CurrentData(Linkjlist*)
Returns a pointer to the data of the current linked list node.

DATA(Listnode*)
Returns a pointer to the data of a specified linked list node.

deQ(Linklist*)
Removes the next node from a queue linked list and returns a pointer to its data.

empty-jist(Link_list*)
Returns whether or not the specified linked list is empty. TRUE if empty.

en-Q(Void*)
Creates an entry in a linked list queue for the specified data item.

free-list(Linklist*)
Free the memory for all of the structures associated with a specified linked list.

Head(Link-list*)
Returns a pointer to the first node in a specified linked list.

insert(Link list* list, long order, Void* data)
Insert the specified data item into the specified linked list in the specified order.

Next(Listnode*)
Returns a pointer to the node following a specified linked list node.

pof Link-list*)
Removes the top node from the specified stack linked list and returns a pointer to
its data.

push(Link_list* stack, Void* data)
Create an entry in the specified linked list stack for the specified data item.

PriorC :-st-node*)
R, urns a pointer to the node preceding a specified link list node.

182

Predecessor(List-node*)
Returns a pointer to the node preceding a specified link list node.

search(Linklist* list, char* string)
Search the specified linked list for a data node matching the specified search
string. Returns TRUE if found and FALSE otherwise.

Successor(Listnode*)
Returns a pointer to the node following a specified link list node.

Tail(Link list*)
Returns a pointer to the last node in the specified link list.

Top(Linkjlist*)
Returns a pointer to the first node in the specified link list.

Mouse, Button and Keyboard Functions

activatekeyboard(Linkjlist)
Activate the keyboard and the specified keyboard buffer for input.

de-activate-keyboard(Link-list)
De-activate the keyboard and the specified keyboard buffer.

FineAdjust [Boolean)
The state of the ToolBox actuator fine-adjustment selection. Fine-adjustment is
selected by pressing and holding the middle-mouse button or the Control key
while controlling an actuator with the left-mouse button pressed and held.

is_MouseDown (Boolean)
The state of any of the mouse buttons, TRUE if pressed.

KeyboardActive (Boolean)
The state of the keyboard, TRUE if active and FALSE otherwise.

Process Management Functions

process-actuator functions(Actuator*)
Process the specified actuator's newvalfunc followed by the User defined action
functions, if any. If TransitionDown is TRUE, the ToolBox calls downfunc. If the
panel is active, the ToolBox calls activefunc. If TransitionUp is TRUE, the
ToolBox calls upfunc. The functions are called in the above specified order.

processnewvalue(Actuator*)
Process the specified actuator after an application program has changed its value.
This function is used to ensure that a change in value is reflected by a
corresponding change in appearance and function.

process-panel functions(Panel*)
Process the specified panel's User defined action functions, if any. If
TransitionDown is TRUE, the ToolBox calls downfunc. If the panel is active, the
ToolBox calls activefunc. If TransitionUp is TRUE, the ToolBox calls upfunc.
The functions are called in the above specified order.

183

process-panels(PanelList)
Process the selected panel and the selected actuator of that panel, if any.
Determines the effect of mouse position, button actuation, and keyboard actuation
on the value and state of the selected objects. The actuator newvalfunc is called
first followed by the action functions if defined, then the panel action functions, if
defined, are called.

process_TooBoxQ(PanelList, short TOKdevice, TOKvalue)
Provides ToolBox processing of each event token. This function must be place
inside the event token processing loop and should be placed before the application
switch statement that process event tokens. The working PanelList is specified by
the first argument. The device id and value are passed to process.ToolBox Q via
the second and third arguments.

resetToolBoxQ0
Prepare the ToolBox for each graphics device event queue processing cycle. This
function must be placed prior to the event token processing.

Screen Management Functions

clearscreenoverlay0
Clear the overlay planes for the entire screen display area.

System Level Support Functions

tbxcalloc(long size)
Returns a pointer to a memory allocation of the specified size. Sets all memory
locations to NULL. If unable to complete the allocation, the ToolBox prints an
appropriate error message and exits the program.

tbxmalloc(long size)
Returns a pointer to a memory allocation of the specified size. If unable to
complete the allocation, the ToolBox prints an appropriate error message and exits
the program.

tbx_realloc(void*, long size)
Returns a pointer to a memory re-allocation of the specified size. If unable to
complete the allocation, the ToolBox prints an appropriate error message and exits
the program.

184

ToolBox Constants, Global Variables and Support Structures

The NPS Panel ToolBox provides a complete library of access, processing and control
constants and global variables related to both panels and actuators. The ToolBox uses no
object oriented method of isolating the panel, actuator and support data structures, so direct
access to all constants and global variables is possible. However, we recommend the
disciplined use of ToolBox constants and global variables rather than direct reference to the
data structures themselves. This sections presents the ToolBox constants and global
variables alphabetized within functional group.

Panel Related Constants, Global Variables and Support Structures

CurrentPanel { Panel*)
Global pointer to current panel data structure.

mx_Current (Screencoord)
Global reference to x screen coordinate for the current mouse position.

mxRef (Screencoord)
Global reference to x screen coordinate for the mouse at most recent mouse button
actuation.

my-Current (Screencoord)
Global reference to y screen coordinate for the current mouse position.

myRef (Screencoord)
Global reference to y screen coordinate for the mouse at most recent mouse button
actuation.

PanelList {PanelList)
Global double linked list of all panels within a ToolBox supported application.

wxCurrent (Screencoord)
Global reference to x coordinate for the current mouse position converted to Panel
coordinate system.

wxRef I Screencoord)
Global reference to x coordinate for the mouse at most recent mouse button
actuation converted to Panel coordinate system.

wyCurrent (Screencoord)
Global reference to y coordinate for the current mouse position converted to Panel
coordinate system.

wyRef (Screencoord)
Global reference to y coordinate for the mouse at most recent mouse button
actuation converted to Panel coordinate system.

185

Actuator Related Constants, Global Variables and Support Structures

x_Ref (Coord)
Global reference to x coordinate (in Panel units) of the current actuator's origin.

yRef I Coord)
Global reference to y coordinate (in Panel units) of the current actuator's origin.

CurrentActuator { Actuator*)
Global pointer to current actuator's data structure.

MAXSTRLEN = 128
Maximum number of characters in ToolBox strings.

MAXFMTLEN = 16
Maximum number of characters in value format string.

MAXBUFLEN = 256
Maximum number of characters in default buffers.

SelectedActuator (Actuator* }
Global pointer to currently selected actuator if any.

Color Management Constants, Global Variables and Support Structures

ColorTable[MAXCOLORTABLES][MAXCOLORS]
The ToolBox color tables.

Color Table Index Constants:
CLEAR
PANELCLEAR = CLEAR
ACTCLEAR = CLEAR
PANELBKGND = 8
PANELLIGHT = 9
ACTLIGHT = 9
PANELNORM = 10
ACTFACE = 10
PANELALT = I I
ACTBODY = I I
PANELHI = 12
ACTDARK = 12
PANELBORDER = 13
ACTBORDER = 13
BEVELLIGHT = 14
PANELDARK = 15
BEVELDARK = 15
MARKLIGHT = 16
MARKDARK = 17
PANELLABEL = 18
ACTLABEL =18
TYPEINBKGND = 19
PANELINPUT = 19
TYPEINCURSOR = 20

186

PANELCURSOR = 20
ACT_CURSOR = 20
ALTCOLOR_1 = 21
ALTCOLOR_2 = 22
ALTCOLOR_3 = 23

MAXCOLORS = 24
Defines the number of color entries in each color table.

MAXCOLORTABLES = 8
Defines the number of color tables.

Font Control Constants, Global Variables and Support Structures

Currentfont
ToolBox reference to most recently selected font.

CurrentFontFactor (float)
ToolBox reference to most recently font scale factor. Used to prevent repeat
application of the same scale factor thereby increasing ToolBox efficiency.

fontbase = Times-Roman 1.0 point
Pointer to ToolBox basic font. ToolBox uses IRIS font manager scaling and
rendering functions.

fontbasebold = Times-Bold 1.0 point
Pointer to ToolBox basic bold font. ToolBox uses IRIS font manager scaling and
rendering functions.

General Constants, Global Variables and Support Structures

BEL 'M7'
Bell character

Boolean = long
Type definition used for logical operations.

BS = V10,
Backspace character

Colorndx = long
Type definition used to index color table.

CR = r015'
Carriage return character

CTRLC = 'N003'
Control-C character

CTRLU = V25'
Control-U character

DEL = '\177'
Delete character

EOS = '\OO0'
End of String character

187

ESC = V333'
Escape character

HT ='Vi'
Horizontal tab character

LF = 12'
Line feed character

NUL = V00'
Null character

Screen = short
Type definition alternate for Screencoord.

SPC = '
Space character

TBXEOF =-I
End of Buffer/File flag

Void = char
Type definition for data structure pointers.

List Management Constants, Global Variables and Support Structures

Linklist
Linked list data structure type definition. Supports double linked lists of
Listnodes.

List-node
Data node structure definition. Supports any type of data within a linked list.

Order of Insertion Constants (used by inserto function):
HEAD 1
TAIL 2
ASCENDING 3
DESCENDING 4

Mouse, Button and Keyboard Related Constants and Global Variables

AltKey (Boolean)
Records the state of either Alt key pressed as TRUE.

ControlKey { Boolean)
Records the state of either Control key pressed as TRUE.

KeyboardBuffer (Linkjlist*)
Global pointer to ToolBox general keyboard buffer. May be used to accept input
from the keyboard if no Panel or Typein keyboard buffers are defined.

KeyboardState (Boolean)
Records whether or not the keyboard has been activated. Activated = TRUE.

KeyButton (Boolean)
State of any keyboard button, UP or DOWN.

188

LeftMouse {Boolean)
State of the left-mouse button, UP or DOWN.

MiddleMouse { Boolean }
State of the middle-mouse button, UP or DOWN.

Mouse and Button position constants:
UP =0
DOWN =1

MouseButton (Boolean }
State of any mouse button, UP or DOWN.

RightMouse (Boolean)
State of the right-mouse button, UP or DOWN.

ShiftKey (Boolean)
Records the state of either Shift key pressed as TRUE.

TransitionDown (Boolean)
Records any mouse button transition from UP to DOWN as TRUE.

TransitionUp (Boolean I
Records any mouse button transition from DOWN to UP as TRUE.

189

APPENDIX C

NPS PANEL DESIGNER AND TOOLBOX
RESERVED WORDS

Reserved Words for the Intermediate File Parser

The following list of words are reserved for use by the intermediate file parser. They
may not be used as the title of a panel. The parser is case-insensitive.

box
bufferact
button
comment
custom-colors
cycle
dial
dirview
fileview
fileend
frame
listview
menu
meter
panel
panelend
paneldesignerfile
scroll
slider
slideroid
stripchart
title
typein
typeout

190

APPENDIX D

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE GENERATED CODE

The following three files are examples of the code generated by the Code Manager.
The filename specified was UserPanel.

191

* File: UserPanel.c Prototype panel output code template *
* Version: 1.0 *
* date: 90/11/17 *
* Author: Richard M. Prevatt
* David M. King *

* Notes: *

* 90/08/13 Created. *
... *... °.. ... °... ° ,°

* This file contains all the functions needed to display and control the *
* User defined panel created within PanelDesigner using the Panel Toolbox. *
* Appropriate declarations and function calls are included. *
* It is used in conjunction with UserPanelfn.c *

* The actual name of this and the related files was derived from the *
* name of the current workspace when it was produced by PanelDesigner. *
* (Substitute the actual name for 'UserPanel' in these instructions. } *

If a file by that name already existed, the PanelDesigner saved the
* the original version in a backup file as follows:

User_Panel.c --> User._Panel.c.bak

* Compile as follows: *

* cc -o username User_Panel.c UserPanel_fn.c /nps-path/lib/ npspanel.a
* -I/nps.path/include -02 -align16 -G 0 -lc-s -lgls -lfim -Im

* /nps.path must be defined as the proper path to the NPS Panel ToolBox

* /nps_path = i/n/gravy l/work/zyda/npspanel in the current release

* The resulting file 'user-name' may be executed.
S********************* ***** *******************************

#define EXTERN /* declarations are not external
#define INIT(x) = (x) /* and initialized here

#include "gl.h" /* Graphics Library declarations
#include "device.h" / Device declarations 5/

#include "tbx.h" /5 Panel Toolbox Declarations

/. User defined and modifiable constants and declarations

#include "UserPanel.h"

- --- --- ---------------------------- ------- ----- --- ---- ------ ---

/0 Function Prototypes used within user-panel.c */

void initialize mainO; /5 initialize panel environment
void initialize-.panelso; /* Initialize the control panels
void initializeactuatorsO; /5 Initialize the actuators */
void initializedefaultso; /5 initialize default settings */
void initialize_colorsO; /* initialize any user defined colors */

192

void imtialize-queue0; /* Initialize the graphics queue */
void initialize-menuso; /* initialize menus here
void initialize_cursorO; /* Initialize cursors here
void initialize overlayO; /* Initialize overlay planes here
void controlprogram /* Control PanelDesigner operation */
(

PanelList *panel_list /* specified panel list */

A void processprogramqueueo; /* Process graphics event queue

void draw controlpanels /* Draw user panel and actuators */
(

PanelList *panel list /* specified panel list */

/* ~ ------ ----------- ------------------- ----- ------- --------------------- *
maino

initialize maino; /* initialize panel environment */

initialize-panelso; /* Initialize the control panels */

initializeactuatorsO; /* create the actuators '/

/ User define initializations are called via user._mitmain. */

userjnit maino; /* user define initializations */

forever /* Panel main loop */

conlrojprogram(PanelList); / process controls and queue '/

draw-controlanels(PanelList); /0 draw user control panels & acts

/* ----- User designed calculations and 2D or 3D drawing functions are */
-.... accessed via userdisplayG; User must manage any extra */

/--....windows required. */

usi _displayo; /* handle to call user functions
)

----- ----------- ------------------ ----- ------- -------- ------ ------

void initialize-maino /* initialize panel environment

initialize_ToolBoxO; /* initialize NPS Panel ToolBox */

/ - initialize all other aspects of main program. */

initializedefaultsO; /* initialize default settings
initializecolorsO; /* initialize any user defined colors */
initializequeueo; /* initialize event graphics queue */

193

initialize..menuso; /* initialize PanelDesigner menus *
iniri "izesursoro, i* initialize special cursors *
iniualizeoPverlayo; /* initialzie overlay planes & color *

/* -- --- -- --- -- - -- --- -- --- - -- -- - --- ---- -- --- -- --- -- -- --- -- --- -- - -- --- -- --- - --

void initialize&.panelso f* Initialize the control panels

Panel *p. /* Temporary panel pointer a

-*---Create each of the user's main control panels. User may alter
----any of the parameters of these panels as required, taking
----care to maintain proper structure and function. *

Control-Panel[0] = p=
create-Panel 0;
set_.pjanellocation(p, 20, 56);
set-panel-size(p, 720, 534);
set-attribute(p, visible, TRUE);
set-attribute(p. popable, FALSE);
set attribute(p, fixed, FALSE);
set-jpanelLitle(p, "User..Panel");
set~attribute(p, color-table, 1);
append-.pnel(p, Panel-List);

I-- --- -- ---- ------- ---------- - ----------.----------- - ---- -------- ,

void initialize-actuatorsO /* Initialize the actuators '

Actuator *a; /* Temporary actuator pointer

-*---Create each of the actuators required on the control panel. User
-0---may alter the parameters of any actuators as required, taking

/--care to maintain proper structure and function. a

Current.Panel - ControlPanel(01;

Control[O1fO] - a -
create_actuator(dial);
set-actuatorJocauion(a. 77.5, 119.5);
set-actatorsize(a, 75, 75, 2);,
setattibute(a, groupjid, -23);
sez..awtibute(a, key, 0);
setactuatorJabel(a. BOITOM, 10, "Dial");
set-detail(Dial, a, major-tics, 4);
set,- detail(Dial, a, minor-tics, 0);,
set-detail(Dial. a. winds, 1);
setzdetail(Dial, a, finefactor, 0.1);
insert acwator(a, Current Panel);

reset-grups(ControlPanel[0]->aLhead);

CurrentActuaor(CurenL Panel) - NULL;

194

SelectedActuator = NULL; /* No actuator selected */

void imtUalizc_defaults0 /*' initialize panel defaulits /

void initializecolors 0 /* Initialize user defined colors

/* ----- Modify the color tables according to User specifications

definecolortable(0, 8, 0.345, 0.525, 0.835, 0);
define-colorjtable(l, 8, 0.345, 0.525, 0.835, 0);
define colortable(l. 10, 1, 0, 0. 0);

/* .---- -- --.-- -- -- -.-- -- -- -----
void initialize-queueo /* Initialize the graphics queue */

user lntqueueo; /* User defined queue init */

}----------------------------------
void initializemenuso /* initialize menus here */
I
user init_menu0; /* User defined menu init}

/*- ------------ ------- --- ------------ -------- ------- ------ --- p
void initialize cursoro /* Initialize extra cursors here SI

usermitcursorO; /S User defined cursor init SI

void initialize-overlay0 /5 Initialize overlay planes here
I
useinitoverlay0; /* User defined overlay init S/

/--------------------------------- ----
void controlprogram /* Control PanelDesigner operation SI
(

PanelList *panellist /* specified panel list SI
)

process..pogram..queueo; f' Process the graphics event queue 5I

195

process_panels(panellist); /* Control panels based on user input

void process.program-queue 0 f* Process graphics event queue

short TOKdevice, /" Graphics event queue device token
TOKvalue; /f Graphics event queue token value Sf

resetToolBox_QO; /" Prepare ToolBox for input process */

while (qtestO) /* Process all tokens available

TOKdevice = qread(&TOKvalue);

/* J* Standard ToolBox input processing

process_ToolBoxQ(Panel_List, TOKdevice, TOKvalue);

switch(TOKdevice) (/* User Program specific Q processing 5/

case RIGHTMOUSE: /* Right Mouse Controls Menus 5/

if (TOKvalue - DOWN) /* on TransitionDown process menu
user.process-menu0; /I User defined menu processor

break;

case ESCKEY: /* Esc key calls for exit */

if (TOKvalue -= UP) { /5 execute when button comes up
userexit0;

break;

default /* Define default processing here
break;

1/ end switch /

/* .-- User defined queue function receives all TOKENs processed.

user..process-queue(TOKdevice, TOKvalue);

/' end while qtestO /

196

void draw-controlpanels 1* Draw user panel and actuators */
(

PanelList *panel_list /* specified panel list
d)

Panel *p;

for (p = Head(panel list) p; p = p->next)

drawpanel(p); /' Draw all actuators of panel

swapbufferspanel(p); /* swapbuffers in specified panel */

EOF: UserPanel.c I lines: 310 } *

197

* File: UserPanelfn.c User defined calculations and *

* Version: 1.0 drawing functions *
* date: 90/12/01 *
* Author. Richard M. Prevatt *

* David M. King *

* Notes: *

* 90/08/13 Created. *
..

* This file contains the User modifiable functions needed in support of *
* the control panel generated by PanelDesigner. Changes and additions may
* be added to all files taking care to manage any extra windows. *

* It is used in conjunction with UserPanel.c *

* The actual name of this and the related files was derived from the *
* name of the current workspace when it was produced by PanelDesigner. *
* { Substitute the actual name for 'UserPanel' in these instructions.) *

* If a file by that name already existed, the PanelDesigner saved the *
* the original version in a backup file as follows: *
* User Panel-fn.c --> UserPanel fn.c.bak *

* Compile as follows: *

* cc -o username UserPanel.c UserPanelfn.c /nps-pathdib/ npspanel.a *
* -I/nps-path/include -02 -align 16 -G 0 -lcs -Igl_s -lfm -Im

/nps-path must be defined as the proper path to the NPS Panel ToolBox *

* /nps_.path = /n/gravy l/work/zyda/npspanel in the current release *
*t .

* The resulting file 'user_name' may be executed. *
* 55*5*5*5* O*S*****0.****** *.*** ****SO* ***SSw*** 5*5***5*555 *5*****

#define EXTERN extem /* declarations are external
#define INIT(x) /* and not initialized here */

#include "gl.h" /* Graphics Library declarations 5/

#include "device.h" /* Device declarations

#include "tbx.h" /0 Panel Toolbox Declarations

/* --. -.-----.--- ..--- .-- .---- .-.------ .-.----- .- ..-- --- .-.----- .-- .-- .---- ...-.--- .-- .-- .-.-.-.------ .----

/0 User defined and modifiable constants and declarations /

#include "User._Panel.h"

/* ---.------.-.------ .-------- .-------------- .------- .------.-------.--------.----...-- -- -- ------------

/* User modifiable function definitions /

198

void userinit-queueo /* User defined queue init */
I
/* Place user needed event queue device initializations here. */

/*----
void userinit-menuO /* User defined menus here

/* Place user defined menu initializations here. */

main menu = defpup(" Sample Main Menu %t ");
addtopup(main-menu," Place menu choices here %xO0 ");
addtopup(mainmenu," Quit Program %x999 ");

* ----- ---- 7 -------- ------- -- - - - - - -

void userinit-cursorO /* User defined cursor init */

/* Place user defined cursor initializations here. */

/* --. -.----- .- .-----. ---.-- .- -- .--- .- ---.- .----- .-- .---- -..------ .------- .------ -.-.---- .- ..---- .- - .-.-- .----
void user init overlay0 /* User defined overlay init

/* Place user defined overlay initializations here.

void user.initjmainO /* User defined main initializations *
I
/* Place user defined initializations here. */
/' This is called after all panel and actuator setup initializations. */

void user-processqueue /* User dnefied queue functions */
(

short TOKEN, /0 Graphics event Q device token */
short TOKvalue /0 Graphics event Q token value "/

*)

/* Place user defined queue processing here. */
..... All queued tokens will be passed to this function after they are */

/* processed by the Panel ToolBox functions. They may be used by
..... the User's program to specify additional actions, etc. */

199

void user processmenuo /* User defined menu processor */

long choice;

choice = dopup(main menu);

switch (choice) I

------ Include other menu selection processing here.

case MENUQUIT: /* exit the program */
user__exito;
break;

defaulL
break;

/* --. -.----- .- .----- .-.----- .-.----- ------- ------- - .-.-- ----------------- - .--- .---------- --------------- - .---
void user.displayO /* All user calc & drawing functions */

/* Place user defined calculations and display control here. */
/* This is called during each drawing loop after control panel */
/* processing is completed. */

void userexito /* Clean up and exit the program
I

..... Place user defined exit procedures here.

panelExito; /* Clear and close all Panel windows *1

* EOF: User Panel-fn.c (lines: 85) *

200

* File: UserPanel.h User modifiable constants and dcls *
* Version: 1.0 *
* date: 90/11/17 *
* Author: Richard M. Prevatt *
* David M. King *

Notes: *
90/08/13 Created.

* This file contains header information as generated by PanelDesigner. *
* It is used in conjunction ,.,iLh UserPanel.c and UserPanelfn.c *

The actual name of this and the related files was derived from the *
* name of the current workspace Ahen it was produced by PanelDesigner. *
* (Substitute the actual name for 'UserPanel' in these instructions. J *

* Ira file by that name already existed, the PanelDesigner saved the *
* the original version in a bz,,kup file as follows:
* User_Panel.h --> User_Panel.h.bak
* *i

Compile as follows: *

* cc -o username UserPanel.c User_Panel_fn.c /nps-pathflib/ npspanel.a *
* -/nps.path/include -02 -align16 -G 0 -lc_s -lgl_s -Ifm -lm *

/nps-path must be defined as the proper path to the NPS Panel ToolBox *

Inps-path = /n/gravy l/work/zyda/npspanel in the current release

The resulting file 'user-name' may be executed. *

#ifndef user.PANEL
#define user-PANEL

/* .--...-------------- -- --- - -- -- - --

/* Global constants */

#define MAXPANELS 1 f* Max number of panels defined */
#define MAX-ACTUATORS 4 /5 Max number of actuators defined */

#define FONTFACTOR 12.0 /0 Scale factor for font manager

#define MENUQUIT 999 /* Menu selections are define here */

-- -..-----....-------------------- ..--.---- .--------- --- ----- - - -------.--------------
/* Global reference variables /

EXTERN /* User control panel reference */
Panel *ControlPanel[MAXPANELS];

EXTERN /5 Actuator reference array */
Actuator *Control[MAXPANELS] [MAXACTUATORS];

201

EXTERN
long mainmenu; /* Main menu reference

/* Function prototypes for user modifiable functions */

void user init maino; /* User define main initializations */
void user initcursorO; /* User defined cursor init */
void userinitoverlayO; /* User defined overlay init */
void user init queueo; f* User defined queue init */
void user init menuO; /* User defined menu init */
void user-process.queue /* User defined queue functions */
(

short.
short

void user..processmenuO; /* User defined menu processor */
void user._display0; f* All user calc & drawing functions */
void user_exitO; f* Clean up and exit the program */

#endif user-PANEL

EOF: User.Panel.h [lines: 84) *

202

APPENDIX E

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE INTERMEDIATE FILE

PanelDesigner File

Panel BoxDial
/C This is an example of an optional permanent comment line C/
/P panel x, y, w, h */ 1010980700
t* auto-align, grid-on, grid-size */ 00 25.0
/* visible, selectable, fixed, popable 11 0 0
/* border, screenrelative, zbuffer 11 0
/* wl, wr, wb, wt, wn, wf */ 0.0 980.0 0.0 700.0 0.0 0.0
/* scale-factor, color-table */ 1.00

Actuator BOX

(* type, group-id, key-equivalent */ 10 -41 0

/1 active, visible, selectable*/ 0 11
/* x, y, w, h, bw */ 469.5 208.5 85.0 25.0 0.0
t* color-table */ 0
1* 1 location, label, label font 1 -13 "Box" 12.0
/1 lx, ly, lw, lh, lbx, Iby */ 24.2 1.7 36.6 21.6 4.8 5.8
/* vlocation, valuefrt, valuefont, val */ 0 "%-+#4.2f" 12.0 0.0
/1 initval, minval, maxval */ 0.0 0.0 1.0
/' vx, vy, vw, vh, vbx, vby */ 21.2 -27.6 42.6 21.64.8 5.8
/t line-width, frgnd-clr, bkgnd.lr */ 20-1

Actuator DIAL
f type, group- id, key-equivalent */ 40-230
/* active, visible, selectable*/ 0 11
/* x, y, w, h, bw */ 671.5 402.5 75.0 75.0 2.0
/* color-table *1 0
/* Uocation, label, label font */ 2 "Dial" 10.0
/* Ix, ly, lw, Ih, lbx, lby */ 22.5 -24.0 30.0 18.0 4.0 5.0
/0 vIocation, valuefmt, valuejfont, val I 0 "%-+#4.f" 12.0 0.0
/" initval, minval, maxval */ 0.0 0.0 1.0
/* vx, vy, vw, vh, vbx, vby */ 16.2 -27.6 42.6 21.6 4.8 5.8
/0 mode, shape, r, major tics, minor-tics "/ 2 1 33.840

ti, tw, ml, mw */ 11.8 2.7 32.1 2.7
f* theta, winds, finefactor */ 0.0 1.0 0.1

PanelEnd

CustomColors

FileEnd

203

LIST OF REFERENCES

Barth, Paul S. "An Object-Oriented Approach to Graphical Interfaces." acm Transactions
on Graphics. Vol 5 No 2, April 1986, pp. 142-172.

Brown, C. M., D. B. Brown, H. V. Burkleo, J. E. Mangelsdorf, R. A. Olsen, and R. D.
Perkins. Human Factors Engineering Standards for Information Processing Systems
(LMSC-D877141). Lockheed Missiles and Space Company, Sunnyvale, CA, 1983.

Brown, Judith R. and Steve Cunningham. Programming the User Interface. John Wiley &
Sons, Inc., New York, 1989.

Danchak, M. M. "Alphanumeric Displays for the Man-Process Interface. Advances in
Instrumentation." ISA Conference, Niagara Falls, New York, October 1977, pp. 197-213.

Engel, S. E. and R. E. Granda. Guidelines for Man/Display Interfaces (Technical Report
TR 00.2720). IBM, Poughkeepsie, NY, 1975.

Fischer, Gerhard. "Human-Computer Interaction Software: Lessons Learned, Challenges
Ahead." IEEE Software, January 1989, pp. 44-52.

Foley, James. "Guest Editor's Introduction: Special Issue on User Interface Software."
acm Transactions on Graphics. Vol. 5 No. 4, October 1986, pp. 279-282.
Gailtz, W. 0. Human Factors in Office Automation. Life Office Management Association,

Atlanta, GA, 1980.

Goodwin, Mark. User Interfaces in C. Management Information Source, Inc., 1989.

Haeberli, Paul E. "a data-flow manager for interactive graphics." Iris Universe, Fall 1987,
pp. 3-5.

Hill, Ralph D. "Supporting Concurrency, Communication, and Synchronization in
Human-Computer Interaction--The Sassafras UIMS." acm Transactions on Graphics. Vol
5 No 3, October 1986, pp. 179-210.

Jacob, Robert J. K. "A Specification Language for Direct-Manipulation User Interfaces."
acm Transactions on Graphics. Vol 5 No 4, October 1986, pp. 283-317.

Limanowski, J. J. "On-line documentation systems: History and issues. Proceedings of the
Human Factors Society 27th Annual Meeting Human Factors Society, Santa Monica,
CA,1983, pp. 1027-1030.

MIL-STD-1472D, Revised 14 March 1989. Military Standard: Human Engineering
Design Criteria for Military Systems, Equipment and Facilities. Department of Defense, 4.
Washington, DC, 1983, pp. 247-278.

204

Miller, G. A. "T'he Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity For Processing Information." Psychological Review, Vol. 63, No. 2, 1956, pp 81-
97.

NASA (National Aeronautics and Space Administration). Spacelab Experiment Computer
Application Software (ECAS) Display Design and Command Usage Guidelines. (Report
MSFC-PROC-71 1). George C. Marshall Space Flight Center. 1979.

Olsen, Dan R. Jr. "MIKE: The Menu Interaction Kontrol Environment." acm Transactions
on Graphics. Vol 5 No 4, October 1986, pp. 318-344.

Parsons, H. M. "The scope of human factors in computer-based data processing systems."
Human Factors, Vol. 12, 1970, 165-175.

Pfaff, G. (editor) User Interface Management Systems. Springer-Verlag, New York, 1985.

Phillips, R. J. "An experimental investigation of layer tints for relief maps in school
atlases." Ergonomics, Vol. 25, 1982, pp. 1143-1154.

Ramsey, H. R. and M. E. Atwood. Human Factors in Computer Systems: A Review of the
Literature (Technical Report SAI-79-111-DEN). Science Applications, Inc., Englewood.
CO, (NTIS No. AD A075 679), 1979.

Reid, Pete, "Work Station Design, Activities and Display Techniques", Fundamentals of
Human-Computer Interaction, Andrew Monk, editor. Academic Press, 1985, pp. 107-126.

Sidorsky, R. C., R. N. Parrish, J. L. Gates, and S. J. Munger. Design guidelines for user
transactions with battlefield automated systems: Prototype for a handbook (ARI Research
Product 84-08). US Army Research Institute, Alexandria, VA, (NTIS No. AD A513 231),
1984.

Smith. Sidney L. "Man-computer information transfer." Electronic Information Display
Systems, J. H. Howard (Ed.), pp. 284-299. Spartan Books, Washington, DC, 1963.

Smith, Sidney L. and Jane N. Mosier. "The user interface to computer-based information
systems: A survey of current software design practice." Behaviour and Information
Technology, Vol. 3, 1984, 195-203.

Smith, Sidney L. and Jane N. Mosier. Guidelines for Designing User Interface Software.
MITRE, Bedford, Massachusetts, ESD-TR-86-278, Electronic Systems Division, AFSC,
1986.

Schneiderman, Ben. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Reading: Addison-Wesley Publishing Company, 1987.

Thimbleby, Harold. "User Interface Design: Generative User Engineering Principles."
Fundamentals of Human-Computer Interaction. Andrew Monk, editor. Academic Press,
1985, pp. 165-180.

Wilson, Stephen H. "the layered user interface." Iris Universe, fall 1987, pp. 9-11.

205

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zy!a 7
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5100

4. Dr. H. Loomis 1
Naval Postgraduate School
Code EC, Department of Electrical Engineering
Monterey, CA 93943-5100

5. Lieutenant David M. King 1
1151 Aquidneck Avenue Suite 402
Middletown, RI 02840

6. Lieutenant Commander Richard M. Prevatt 1
6908 Conservation Drive
Springfield, VA 22153

7. David Pratt 1
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5100

2

206

